• Title/Summary/Keyword: expansion stress

Search Result 922, Processing Time 0.032 seconds

A Semi-analytical Approach for Numerical Analysis of Residual Stress in Oxide Scale Grown on Hot-rolled Steels (열간압연강에서 형성된 산화물 스케일의 잔류 응력 수치 분석을 위한 준해석적 방법 개발)

  • Y.-J. Jun;J.-G. Yoon;J.-M. Lee;S.-H. Kim;Y.-C. Kim;S. Nam;W. Noh
    • Transactions of Materials Processing
    • /
    • v.33 no.3
    • /
    • pp.200-207
    • /
    • 2024
  • In this study, we developed a semi-analytical approach for the numerical analysis of residual stress in oxide scales formed on hot-rolled steels. The oxide scale, formed during the hot rolling process, experiences complex interactions due to thermal and mechanical influences, significantly affecting the material's integrity and performance. Our research focuses on integrating various stress components such as thermal stress, growth stress, and creep behavior to predict the residual stress within the oxide layer. The semi-analytical method combines analytical expressions for each stress component with numerical integration to account for their cumulative effects. Validation through instrumented indentation tests confirms the reliability of our model, which considers thermal expansion coefficient (CTE) differences, scale growth, and creep-induced stress relaxation. Our findings indicate that thermal stress resulting from CTE differences significantly impacts the overall residual stress, with growth stress contributing a compressive component during cooling, and creep behavior playing a minor role in stress relaxation. This comprehensive approach enhances the accuracy of residual stress prediction, facilitating the optimization of material design and processing conditions for hot-rolled steel products.

Analysis of cavity expansion and contraction in unsaturated residual soils

  • Lukosea, Alpha;Thiyyakkandi, Sudheesh
    • Geomechanics and Engineering
    • /
    • v.28 no.4
    • /
    • pp.405-419
    • /
    • 2022
  • Cavity expansion and contraction solutions for cylindrical and spherical cavities in unsaturated residual soils are presented in this paper. Varying soil state in the plastic zone is accounted by a numerical approach, wherein an element-by-element discretization of the plastic zone of both expanding and contracting cavities is carried out. Unlike existing methods utilizing self-similarity technique, the solution procedure enables the prediction of entire soil-state at any stage of expansion and subsequent contraction. It is also applicable for both cavity creation and expansion problems. The approach adopts constant contribution of suction to effective stress (constant Xs drainage condition) for analysis. The analysis procedure is validated by interpreting the previously reported pressuremeter test results in lateritic residual soil. The typical cavity expansion and contraction characteristics of unsaturated Indian lateritic soil were then examined using this solution procedure. The effect of initial soil-state on cavity limit pressure, plastic radius, reverse yield pressure, and reverse plastic radius are also presented.

Modeling of Long-term Temperature Dependent Expansion in Mass Concrete (온도의존적 장기팽창성 콘크리트의 해석모델)

  • Cha, Soo-Won;Jang, Bong-Seok;Bae, Sung-Geun;Jung, Woo-Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.373-374
    • /
    • 2009
  • Three autogenous expansion model of MgO concrete are investigated in order to access their suitability in stress analysis which consider temperature and volume change due to hydration of cement and temperature dependent expansion of MgO.

  • PDF

Flow-Induced Birefringence of Polymers in the Region of Abrupt Thickness Transition (두께가 급격히 변하는 영역에서 고분자 유동에 의한 복굴절)

  • Lee, H.S.;Isayev, A.I.
    • Transactions of Materials Processing
    • /
    • v.18 no.1
    • /
    • pp.20-25
    • /
    • 2009
  • A finite element analysis was carried out for a 4:1 planar contraction die for polymer melts using the viscoelastic constitutive equation of Leonov. Viscoelastic fluids showed significant differences in pressure drop and birefringence in contraction and expansion flows. The pressure drop was higher and the birefringence smaller in expansion than in contraction flow. The difference increased with increasing flow rate. The nonlinear Leonov model was shown to describe the viscoelastic effects observed in experiments.

A multiscale method for analysis of heterogeneous thin slabs with irreducible three dimensional microstructures

  • Wang, Dongdong;Fang, Lingming
    • Interaction and multiscale mechanics
    • /
    • v.3 no.3
    • /
    • pp.213-234
    • /
    • 2010
  • A multiscale method is presented for analysis of thin slab structures in which the microstructures can not be reduced to two-dimensional plane stress models and thus three dimensional treatment of microstructures is necessary. This method is based on the classical asymptotic expansion multiscale approach but with consideration of the special geometric characteristics of the slab structures. This is achieved via a special form of multiscale asymptotic expansion of displacement field. The expanded three dimensional displacement field only exhibits in-plane periodicity and the thickness dimension is in the global scale. Consequently by employing the multiscale asymptotic expansion approach the global macroscopic structural problem and the local microscopic unit cell problem are rationally set up. It is noted that the unit cell is subjected to the in-plane periodic boundary conditions as well as the traction free conditions on the out of plane surfaces of the unit cell. The variational formulation and finite element implementation of the unit cell problem are discussed in details. Thereafter the in-plane material response is systematically characterized via homogenization analysis of the proposed special unit cell problem for different microstructures and the reasoning of the present method is justified. Moreover the present multiscale analysis procedure is illustrated through a plane stress beam example.

A FINITE ELEMENT ANALYSIS OF THE STRESS DISTRIBUTION AND DISPLACEMENT IN HUMAN MAXILLA TO RAPID PALATAL EXPANSION (상악골 급속 확장시 상악골의 응력 분산과 변위에 대한 유한요소법적 분석)

  • Joe, Bong-Jea;Sohn, Byung-Hwa
    • The korean journal of orthodontics
    • /
    • v.15 no.1
    • /
    • pp.43-54
    • /
    • 1985
  • Recently, rapid palatal expansion technique is widely used for the correction of the skeletal imbalance in Cl III malocclusion patients. There were many studies about the cephalometric changes to rapid palatal expansion but quantitative analysis were small. The purpose of this study was to analysis the stresses and displacement of the maxilla in human dry skull to rapid palatal expansion. The results were as follows: 1. The anterior portion of palate show more lateral and inferior displacement than the posterior portion. But the posterior portion show more anterior displacement. 2. In transpalatal suture area, the medial portion show more anterior and inferior displacement than the lateral portion. But the lateral portion show more lateral displacement than the medial portion. 3. In mid-sagittal plane, the lower portion (palatal area) of maxilla show more anterior, lateral, inferior displacement than the upper portion (frontamaxillary stuture area). 4. In zygomatic arch, the adjacent area to maxilla show tonsil. stresses and the adjacent area to frontal bone show compressive stresses. 5. The sequence of stress bearing area to R.P.E. is upper retromolar area, upper 1st molar, 1st premolar, 2nd premolar, anterior segment of teeth.

  • PDF

A Study on the axial force in CWR with Turnout according to Distance between Bridge Expansion Joint and Turnout (교량신축과 분기기의 이격거리에 따른 교량상 분기기 축력특성 연구)

  • Choi, Jin-Yu;Lee, Hyun-Jeong;Yang, Shin-Chu;Jeong, Jang-Yong;Yu, Jin-Young
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1050-1055
    • /
    • 2008
  • The demand on a turnout layed on a bridge is rising owing to the increasing number of stations on the viaduct. And also the demand on a turnout with CWR is rising to upgrade running speed of the passing train. A CWR with turnout is subjected to additional axial force induced by the thermal expansion of bridge as well as lead rail of turnout. The additional axial force is closely related with the distance between bridge expansion joint and turnout when it is located near the movable bearing of bridge, and it is required to keep some distance to prevent excessive axial stress in CWR. But, there is no guideline in specification for the proper distance from E.J. to turnout, and it caused problem in planning turnout or bridge. So, it this study, the parametric study to investigate the effect on axial stress in CWR with turnout according to span length and distance between bridge expansion joint and turnout was performed. From the results of numerical analysis, it was found out that $5{\sim}30m$ distance is required to prevent excessive axial in CWR for span length less 90m.

  • PDF

Drained cylindrical cavity expansion in K0-consolidated anisotropic soils under biaxial in-situ stresses

  • Cao, Xiaobing;Zhang, Junran;Sun, De'an
    • Geomechanics and Engineering
    • /
    • v.28 no.5
    • /
    • pp.493-503
    • /
    • 2022
  • Cavity expansion is a classical problem in the field of solid mechanics with a wide range of applications in geotechnical and petroleum engineering. A drained solution is developed for cylindrical cavity expansion in anisotropic soils under biaxial in-situ stresses using a K0-based anisotropic modified Cam-clay model (K0-AMCC). The problem is formulated by solving differential equations using an auxiliary variable, which provides analytical expressions for the volume and four stress components of the soil around the cylindrical cavity. The solution is validated by comparisons with existing well-developed solutions. The results show that the present solution well captures the cavity expansion responses in anisotropic soils under biaxial in-situ stresses, and removes limiting assumptions that the cylindrical cavity expands under uniform in-situ stress in isotropic soils. The elastic-plastic boundary of the expanding cylindrical cavity in K0-consolidated anisotropic soils under biaxial in-situ stresses is a circle rather than an ellipse in isotropic soils, and the mathematical proof is provided in detail.

Thermo-Mechanical Behavior of Short SMA Reinforced Polymeric Composite Using Shear tag Theory (전단지연 이론을 이용한 단섬유 형태의 SMA 보강 고분자 복합재료의 열변형 거동 해석)

  • Jeong, Tae-Heon;Lee, Dong-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.1001-1010
    • /
    • 1999
  • Thermo-mechanical behavior of discontinuous shape memory alloy(SMA) reinforced polymeric composite has been studied using modified shear lag theory and finite element(FE) analysis with 2-D multi-fiber model. The aligned and staggered models of short-fiber arrangement are employed. The effects of fiber overlap and aspect ratio on the thermomechanical responses such as the thermal expansion coefficient are investigated. It is found that the increase of both tensile stress(resistance stress) in SMA fiber and compressive stress in polymer matrix with increasing aspect ratio is the main cause of low thermal deformation of the composite.

A Study on Energy Release Rate for Interface Cracks in Pseudo-isotropic Dissimilar Materials (유사등방성 이종재 접합계면 균열의 에너지 해방률에 관한 연구)

  • 이원욱;김진광;조상봉
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.193-200
    • /
    • 2003
  • The energy release rate for an interface crack in pseudo-isotropic dissimilar materials was obtained by the eigenfunction expansion method using the two-term William's type complex stress function. The complex stress function for pseudo-isotropic materials must be different from that for anisotropic materials. The energy release rate for an interface crack in pseudo-isotropic dissimilar materials was analyzed numerically by RWCIM. The results obtained were verified by comparing the other worker's results and discussed.