• Title/Summary/Keyword: expansion ratio

Search Result 1,160, Processing Time 0.033 seconds

Mechanical and hygrothermal behaviour of functionally graded plates using a hyperbolic shear deformation theory

  • Laoufi, Imene;Ameur, Mohammed;Zidi, Mohamed;Bedia, El Abbes Adda;Bousahla, Abdelmoumen Anis
    • Steel and Composite Structures
    • /
    • v.20 no.4
    • /
    • pp.889-911
    • /
    • 2016
  • Using the hyperbolic shear deformation plate model and including plate-foundation interaction (Winkler and Pasternak model), an analytical method in order to determine the deflection and stress distributions in simply supported rectangular functionally graded plates (FGP) subjected to a sinusoidal load, a temperature and moisture fields. The present theory exactly satisfies stress boundary conditions on the top and the bottom of the plate. No transversal shear correction factors are needed because a correct representation of the transversal shearing strain is given. Materials properties of the plate (elastic, thermal and moisture expansion coefficients) are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. Numerical examples are presented and discussed for verifying the accuracy of the present theory in predicting the bending response of FGM plates under sinusoidal load and a temperature field as well as moisture concentration. The effects of material properties, temperature, moisture, plate aspect ratio, side-to-thickness ratio, ratio of elastic coefficients (ceramic-metal) and three distributions for both temperature and moisture on deflections and stresses are investigated.

Thermomechanical effects on the bending of antisymmetric cross-ply composite plates using a four variable sinusoidal theory

  • Chattibi, F.;Benrahou, Kouider Halim;Benachour, Abdelkader;Nedri, K.;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.19 no.1
    • /
    • pp.93-110
    • /
    • 2015
  • The thermomechanical bending response of anti-symmetric cross-ply composite plates is investigated by the use of the simple four variable sinusoidal plate theory. The theory accounts for sinusoidal distribution of transverse shear stress, and satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate without using shear correction factor. By dividing the transverse displacement into bending and shear parts, the number of unknowns and governing equations for the present theory is reduced, significantly facilitating engineering analysis. The validity of the present theory is demonstrated by comparison with solutions available in the literature. Numerical results are presented to demonstrate the behavior of the system. The influences of aspect ratio, side-to-thickness ratio, thermal expansion coefficients ratio and stacking sequence on the thermally induced response are studied. The present study is relevant to aerospace, chemical process and nuclear engineering structures which may be subjected to intense thermal loads.

Strain Analysis for Quality Factor oft he Layered Mg0.93Ca0.07TiO3-(Ca0.3Li0.14Sm0.42)TiO3 Ceramics at Microwave Frequencies

  • Cho, Joon-Yeob;Yoon, Ki-Hyun;Kim, Eung-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.3
    • /
    • pp.222-225
    • /
    • 2002
  • Microwave dielectric properties of the layered and functionally graded materials (FGMs) of $Mg_{0.93}Ca_{0.07}TiO_3$ (MCT) and $(Ca_{0.3}Li_{0.14}Sm_{0.42})TiO_3$(CLST) were investigated as a function of the volume ratio of two components. Dielectric constant was decreased with an increase of the volume ratio of MCT which had a lower dielectric constant thant CLST. For the layered FGMs specimens, the difference of thermal expansion coefficients between two components induced thermal strain to dielectric layers, which was confirmed by the plot of ${\Delta}$k (X-ray diffraction peak width0 versus k (scattering vector) using the double-peak Lorentzian function, f(x). Quality factor of the specimens was affected by the thermal strain of dielectric layer, especially MCT layer. For the specimen with the volume ratio of MCT/CLST = 2, the qulaity factor of the specimen showed a minimum value due to the maximum thermal strain fo MCT layer.

The Comparative Study on Performance Evaluation of Outdoor Space for Remodeling Apartment (리모델링 공동주택단지의 외부공간 성능평가 비교 연구)

  • Kim, Ho-Yun;Lee, Sang-Suk;Yu, Joo-Eun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.4
    • /
    • pp.1-17
    • /
    • 2016
  • In this study, remodeling projects are perceived as a sustainable urban management policy to boost the value of old apartments and stimulate urban regeneration and development. To evaluate the physical environmental performance of external spaces of remodeled apartments, an evaluation model was developed. After applying it to the target places, the following results were obtained. First, analysis of the external space change index of the target apartments revealed that institutional standards are necessary in line with the building arrangement type, parking lot expansion method, and changes in the building-to-land ratio. Second, the score ratio as to the external space change index performance is as follows: safety (48.30); pleasantness (25.90); convenience (18.90); eco-friendliness (14.90). In other words, "safety" had the biggest score ratio. Third, to boost the external space performance of remodeled apartments, the needs of residents and neighboring environmental plans should be considered from a communality standpoint.

Analysis of th estress intensity factor of mode I crack in a finite width plate with variable thickness (두께가 變化하는 有限幅板材에서의 모우드 I 龜裂 應力擴大係數 解析)

  • 양원호;방시항
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.1
    • /
    • pp.132-144
    • /
    • 1987
  • This paper presents the theroetical analysis of the crack tip stress intensity factor for a center crack in a finite width plate with variable thickness. The analyses were based on Laurent's expansions of complex stress potentials where the expansion coefficients are determined from the boundary conditions. The perturbation method was employed in numerical calculations. The correction factor F(.lambda.)is given in the form of power series of .lambda. [a numerical formula] where .lambda.=a/w$^{1}$; Dimensionless crack length, .betha.=t$_{2}$/t; Thickness ratio .omega.=w$_{2}$/w$_{1}$; width ratio The correction factor values vary with the width ratio .omega. and the maximum variation occurs around .betha.=1. For the case of .betha.=1 or .betha.=0 (uniform thickness plate0, the correction factor values agree well with Feddersen's formula. In all cases, as .lambda. approaches to 1 (thickness interface), the correction factor values are decreased rapidly for .betha.>1, and increased rapidly for .betha.<1.

Design and Evaluation of Multiple Effect Evaporator Systems According to the Steam Ejector Position (증기 이젝터 위치에 따른 다중효용증발시스템의 설계 및 성능분석)

  • Kim, Deukwon;Choi, Sangmin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.11
    • /
    • pp.434-443
    • /
    • 2016
  • The evaporation of water from an aqueous solution is widely used in the food, desalination, pulp, and chemical industries. Usually, a large amount of energy is consumed in the evaporation process to boil off water due to atmospheric pressure. As a way of improving the energy efficiency of the evaporation process, the combination of multiple effect evaporation and thermal vapor recompression has been proposed and has become a successful technique. In this study, 4 multiple-effect falling film type evaporators for sugar solution are designed and the energy efficiency of the system is analyzed in response to the selection of the steam ejector position. Energy efficiency is increased and vapor is more compressed in the steam ejector as the Thermal Vapor Recompression (TVR) is arranged in the rear part of the evaporator system. A simplified 0-dimensional evaporator model is developed using non-linear equations derived from mass balances, energy balances, and heat transfer equations. Steam economy is calculated to compare the evaporation performance of the 4 proposed evaporators. The entrainment ratio, compression ratio, and expansion ratio are computed to check the ejector performance.

Characteristics of Performance and Back-Fire for External Mixture Hydrogen Fueled Engine without Valve Overlap Period (밸브 오버랩 기간이 없는 흡기관 분사식 수소기관의 성능 및 역화특성)

  • Lee, K.J.;Kang, J.K.;Cong, Huynh Thanh;Noh, K.C.;Lee, J.T.
    • Journal of Hydrogen and New Energy
    • /
    • v.18 no.4
    • /
    • pp.374-381
    • /
    • 2007
  • In order to verify the feasibility of expansion of back-fire limit equivalence ratio in the hydrogen-fueled engine with external mixture, the characteristics of performance and combustion are experimentally analyzed with change of intake/exhaust valve timings under the fixed valve overlap period of $0^{\circ}$ CA(non-valve overlap period). These characteristics are also tested for the change of exhaust valve closing timing while intake valve opening timing is fixed to clear the main cause of back-fire occurrence. As the results, the less valve overlap period center is retarded, the more back-fire limit equivalence ratio increases and back-fire does not occurred after TDC. In addition, it was shown that the control of back-fire is dependent on intake valve opening timing than valve overlap period.

A Investigation of Back Fire Control with Valve Overlap Period Change In the Same Supply Energy (동일열량공급하의 밸브오버랩기간 변화에 대한 역화억제 검토)

  • Kang, J.K.;Huynh, Thanh Cong;Noh, K.C.;Lee, J.T.
    • Journal of Hydrogen and New Energy
    • /
    • v.18 no.3
    • /
    • pp.348-355
    • /
    • 2007
  • To grasp a feasibility of back fire control by valve overlap period, back fire limit equivalence ratio was estimated with valve overlap period which has the same supply energy and positive intake pressure as valve overlap period $300^{\circ}\;CA$. As the result, it was shown that the smaller valve overlap period has the higher back fire limit equivalence ratio under valve overlap period $300^{\circ}\;CA$ as well as VOP $0^{\circ}\;CA$. This result means that expansion of back fire equivalence ratio by decreasing valve overlap period was caused by decrease of back flow duration of flame from in-cylinder to intake port than decrease of lower supply energy.

NUMERICAL ANALYSIS FOR TURBULENT FLOW AND AERO-ACOUSTIC OVER A THREE DIMENSIONAL CAVITY WITH LARGE ASPECT RATIO (3차원 고세장비 공동 주위의 난류유동 및 음향 특성에 관한 수치적 연구)

  • Mun, P.U.;Kim, J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.297-301
    • /
    • 2008
  • The flight vehicles have cavities such as wheel wells and bomb bays. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves. Resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. The flow field is observed to oscillate in the "shear layer mode" with low aspect ratio. In the present study, numerical analysis was performed for cavity flows by the unsteady compressible three dimensional Reynolds-Averaged Navier-Stokes (RANS) equations with Wilcox's $\kappa$-$\omega$ turbulence model. The flow field is observed to oscillate in the shear layer mode" with large aspect ratio. Based on the SPL(Sound Pressure Level) analysis of the pressure variation at the cavity trailing edge, the dominant frequency was analyzed and compared with the results of Rossiter's formul. The aero-acoustic wave analyzed with CPD(Correlation of Pressure Distribution).

  • PDF

NUMERICAL ANALYSIS OF THREE DIMENSIONAL SUPERSONIC CAVITY FLOW FOR THE VARIATION OF CAVITY SPANWISE RATIO (3차원 공동의 폭변화에 따른 초음속 유동에 대한 수치분석연구)

  • Woo, C.H.;Kim, J.S.;Choi, H.I.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.181-184
    • /
    • 2006
  • High-speed flight vehicle have various cavities. The supersonic cavity flow is complicated due to vortices, flow separation and reattachment, shock and expansion waves. The general cavity flow phenomena include the formation and dissipation of vortices, which induce oscillation and noise. The oscillation and noise greatly affect flow control, chemical reaction, and heat transfer processes. The supersonic cavity' flow with high Reynolds number is characterized by the pressure oscillation due to turbulent shear layer, cavity geometry, and resonance phenomenon based on external flow conditions, The resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. In the present study, we performed numerical analysis of cavities by applying the unsteady, compressible three dimensional Reynolds-Averaged Navier-Stokes(RANS) equations with the ${\kappa}-{\omega}$ turbulence model. The cavity model used for numerical calculation had a depth(D) of 15mm cavity aspect ratio(L/D) of 3, width to spanwise ratio(W/D) of 1.0 to 5.0. Based on the PSD(Power Spectral Density) and CSD(Cross Spectral Density) analysis of the pressure variation, the dominant frequency was analyized and compared with the results of Rossiter's Eq.

  • PDF