DOI QR코드

DOI QR Code

Thermomechanical effects on the bending of antisymmetric cross-ply composite plates using a four variable sinusoidal theory

  • Chattibi, F. (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Benrahou, Kouider Halim (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Benachour, Abdelkader (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Nedri, K. (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Tounsi, Abdelouahed (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
  • Received : 2013.10.31
  • Accepted : 2014.03.23
  • Published : 2015.07.25

Abstract

The thermomechanical bending response of anti-symmetric cross-ply composite plates is investigated by the use of the simple four variable sinusoidal plate theory. The theory accounts for sinusoidal distribution of transverse shear stress, and satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate without using shear correction factor. By dividing the transverse displacement into bending and shear parts, the number of unknowns and governing equations for the present theory is reduced, significantly facilitating engineering analysis. The validity of the present theory is demonstrated by comparison with solutions available in the literature. Numerical results are presented to demonstrate the behavior of the system. The influences of aspect ratio, side-to-thickness ratio, thermal expansion coefficients ratio and stacking sequence on the thermally induced response are studied. The present study is relevant to aerospace, chemical process and nuclear engineering structures which may be subjected to intense thermal loads.

Keywords

References

  1. Ait Amar Meziane, M., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
  2. Ait Atmane, H., Tounsi, A., Mechab, I. and Adda Bedia, E.A. (2010), "Free vibration analysis of functionally graded plates resting on Winkler-Pasternak elastic foundations using a new shear deformation theory", Int. J. Mech. Mater. Des., 6(2), 113-121. https://doi.org/10.1007/s10999-010-9110-x
  3. Ait Yahia, S., Ait Atmane, H., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., Int. J., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
  4. Ali, J.S.M., Bhaskar, K. and Varadan, T.K. (1999), "A new theory for accurate thermal/mechanical flexural analysis of symmetric laminated plates", Compos. Struct, 45(3), 227-232. https://doi.org/10.1016/S0263-8223(99)00028-8
  5. Ambartsumian, S.A. (1958), "On the theory of bending plates", Izv Otd Tech Nauk AN SSSR, 5, 69-77.
  6. Bachir Bouiadjra, R., Adda Bedia, E.A. and Tounsi, A. (2013), "Nonlinear thermal buckling behavior of functionally graded plates using an efficient sinusoidal shear deformation theory", Struct. Eng. Mech., Int. J., 48(4), 547-567. https://doi.org/10.12989/sem.2013.48.4.547
  7. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos.: Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
  8. Belkorissat, I., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable mode", Steel Compos. Struct., Int. J., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063
  9. Benachour, A., Daouadji, H.T., Ait Atmane, H., Tounsi, A. and Meftah, S.A. (2011), "A four variable refined plate theory for free vibrations of functionally graded plates with arbitrary gradient", Compos. Part B, 42(6), 1386-1394. https://doi.org/10.1016/j.compositesb.2011.05.032
  10. Berrabah, H.M., Tounsi, A., Semmah, A. and Adda Bedia, E.A. (2013), "Comparison of various refined nonlocal beam theories for bending, vibration and buckling analysis of nanobeams", Struct. Eng. Mech., Int. J., 48(3), 351-365. https://doi.org/10.12989/sem.2013.48.3.351
  11. Bogdanovich, A.E. and Pastore, C.M. (1996), Mechanics of Textile and Laminated Composites with Applications to Structural Analysis, Chapman & Hall, London, UK.
  12. Bouchafa, A., Bachir Bouiadjra, M., Houari, M.S.A. and Tounsi, A. (2015), "Thermal stresses and deflections of functionally graded sandwich plates using a new refined hyperbolic shear deformation theory", Steel Compos. Struct., Int. J., 18(6), 1493-1515. https://doi.org/10.12989/scs.2015.18.6.1493
  13. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., Int. J., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
  14. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., Int. J., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
  15. Bouremana, M., Houari, M.S.A., Tounsi, A., Kaci, A. and Adda Bedia, E.A. (2013), "A new first shear deformation beam theory based on neutral surface position for functionally graded beams", Steel Compos. Struct., Int. J., 15(5), 399-423. https://doi.org/10.12989/scs.2013.15.4.399
  16. Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A., (2014), "A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates", Int. J. Computat. Method., 11(6), 1350082. https://doi.org/10.1142/S0219876213500825
  17. Castellazzi, G., Krysl, P. and Bartoli, I. ((2013), "A displacement-based finite element formulation for the analysis of laminated composite plates", Compos. Struct., 95, 518-527. https://doi.org/10.1016/j.compstruct.2012.08.029
  18. Cui, X.Y., Liu, G.R. and Li, G.Y. (2011), "Bending and vibration responses of laminated composite plates using an edge-based smoothing technique", Eng. Anal. Bound. Elem., 35(6), 818-826. https://doi.org/10.1016/j.enganabound.2011.01.007
  19. Draiche, K., Tounsi, A. and Khalfi, Y. (2014), "A trigonometric four variable plate theory for free vibration of rectangular composite plates with patch mass", Steel Compos. Struct., Int. J., 17(1), 69-81. https://doi.org/10.12989/scs.2014.17.1.069
  20. EL Meiche, N., Tounsi, A., Ziane, N., Mechab, I. and Adda Bedia, E.A. (2011), "A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate", Int. J. Mech. Sci., 53(4), 237-247. https://doi.org/10.1016/j.ijmecsci.2011.01.004
  21. Ghugal, Y.M. and Kulkarni, S.K. (2011), "Thermal stress analysis of cross-ply laminated plates using refined shear deformation theory", J. Exp. Appl. Mech., 2(1), 47-66.
  22. Ghugal, Y.M. and Kulkarni, S.K. (2013a), "Flexural analysis of cross-ply laminated plates subjected to nonlinear thermal and mechanical loadings", Acta Mech., 224(3), 675-690. https://doi.org/10.1007/s00707-012-0774-1
  23. Ghugal, Y.M. and Kulkarni, S.K. (2013b), "Thermal response of symmetric cross-ply laminated plates subjected to linear and non-linear thermo-mechanical loads", J. Therm. Stress., 36(5), 466-479. https://doi.org/10.1080/01495739.2013.770664
  24. Grover, N., Maiti, D.K. and Singh, B.N. (2013), "A new inverse hyperbolic shear deformation theory for static and buckling analysis of laminated composite and sandwich plates", Compos. Struct., 95, 667-675. https://doi.org/10.1016/j.compstruct.2012.08.012
  25. Grover, N., Maiti, D.K. and Singh, B.N. (2014), " Flexural behavior of general laminated composite and sandwich plates using a secant function based shear deformation theory", Latin Am. J. Solid. Struct., 11(7), 1275-1297. https://doi.org/10.1590/S1679-78252014000700011
  26. Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., Int. J., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
  27. Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Adda Bedia, E.A. (2014), "New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech., ASCE, 140(2), 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
  28. Houari, M.S.A., Tounsi, A. and Anwar Beg, O. (2013), "Thermoelastic bending analysis of functionally graded sandwich plates using a new higher order shear and normal deformation theory", Int. J. Mech. Sci., 76, 102-111. https://doi.org/10.1016/j.ijmecsci.2013.09.004
  29. Karama, M., Afaq, K.S. and Mistou, S. (2003), "Mechanical behaviour of laminated composite beam by new multi-layered laminated composite structures model with transverse shear stress continuity", Int. J. Solid. Struct., 40(6), 1525-1546. https://doi.org/10.1016/S0020-7683(02)00647-9
  30. Kettaf, F.Z., Houari, M.S.A., Benguediab, M. and Tounsi, A. (2013), "Thermal buckling of functionally graded sandwich plates using a new hyperbolic shear displacement model", Steel Compos. Struct., Int. J., 15(4), 399-423. https://doi.org/10.12989/scs.2013.15.4.399
  31. Khalfi, Y., Houari, M.S.A. and Tounsi, A. (2014), "A refined and simple shear deformation theory for thermal buckling of solar functionally graded plates on elastic foundation", Int. J. Computat. Method., 11(5), 135007.
  32. Larbi Chaht, F., Kaci, A., Houari, M.S.A., Tounsi, A., Anwar Beg, O. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., Int. J., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425
  33. Mahi, A., Adda Bediab, E.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Modell., 39(9), 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
  34. Matsunaga, H. (1999), "Stress analysis of functionally graded plates subjected to thermal and mechanical loadings", Compos. Struct., 87(4), 344-357. https://doi.org/10.1016/j.compstruct.2008.02.002
  35. Mindlin, R.D. (1951), "Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates", J. Appl. Mech., 18(1), 31-38.
  36. Nedri, K., El Meiche, N. and Tounsi, A. (2014), "Free vibration analysis of laminated composite plates resting on elastic foundations by using a refined hyperbolic shear deformation theory", Mech. Compos. Mater., 49(6), 629-640. https://doi.org/10.1007/s11029-013-9379-6
  37. Ould Larbi, L., Kaci, A., Houari, M.S.A. and Tounsi, A. (2013), "An efficient shear deformation beam theory based on neutral surface position for bending and free vibration of functionally graded beams", Mech. Based Des. Struct. Mach., 41(4), 421-433. https://doi.org/10.1080/15397734.2013.763713
  38. Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719
  39. Reddy, J.N. and Hsu, Y.S. (1980), "Effects of shear deformation and anisotropy on the thermal bending of layered composite plates", J. Therm. Stress., 3(4), 475-493. https://doi.org/10.1080/01495738008926984
  40. Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech., 12(2), 69-72.
  41. Sadoune, M., Tounsi, A., Houari, M.S.A. and Adda Bedia, E.A. (2014), "A novel first-order shear deformation theory for laminated composite plates", Steel Compos. Struct., Int. J., 17(3), 321-338. https://doi.org/10.12989/scs.2014.17.3.321
  42. Said, A., Ameur, M., Bousahla, A.A. and Tounsi, A. (2014), "A new simple hyperbolic shear deformation theory for functionally graded plates resting on Winkler-Pasternak elastic foundations", Int. J. Computat. Method., 11(6), 1350098. https://doi.org/10.1142/S0219876213500989
  43. Saidi, H., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A. (2013), "Thermo-mechanical bending response with stretching effect of functionally graded sandwich plates using a novel shear deformation theory", Steel Compos. Struct., Int. J., 15(2), 221-245. https://doi.org/10.12989/scs.2013.15.2.221
  44. Sahoo, R. and Singh, B.N. (2013), "A new inverse hyperbolic zigzag theory for the static analysis of laminated composite and sandwich plates", Compos. Struct., 105, 385-397. https://doi.org/10.1016/j.compstruct.2013.05.043
  45. Soldatos, K.P. and Timarci, T. (1993), "A unified formulation of laminated composite, shear deformable, five-degrees-of-freedom cylindrical shell theories", Compos. Struct., 25(1-4), 165-171. https://doi.org/10.1016/0263-8223(93)90162-J
  46. Swaminathan, K. and Naveenkumar, D.T. (2014), "Higher order refined computational models for the stability analysis of FGM plates-Analytical solutions", Eur. J. Mech. A/Solids, 47, 349-361. https://doi.org/10.1016/j.euromechsol.2014.06.003
  47. Tounsi, A., Semmah, A. and Bousahla, A.A. (2013a), "Thermal buckling behavior of nanobeam usin an efficient higher-order nonlocal beam theory", J. Nanomech. Micromech., ASCE, 3(3), 37-42. https://doi.org/10.1061/(ASCE)NM.2153-5477.0000057
  48. Tounsi, A., Benguediab, S., Adda Bedia, E.A., Semmah, A. and Zidour. M. (2013b), "Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes", Adv. Nano Res., Int. J., 1(1), 1-11. https://doi.org/10.12989/anr.2013.1.1.001
  49. Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013c), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Technol., 24(1), 209-220. https://doi.org/10.1016/j.ast.2011.11.009
  50. Whitney, J.M. and Leissa, A.W. (1969), "Analysis of heterogeneous anisotropic plates", J. Appl. Mech., 36(2), 261-266. https://doi.org/10.1115/1.3564618
  51. Wu, Z., Cheng, Y.K., Lo, S.H. and Chen, W. (2007), "Thermal stress analysis for laminated plates using actual temperature field", Int. J. Mech. Sci., 49(11), 1276-1288. https://doi.org/10.1016/j.ijmecsci.2007.03.007
  52. Yaghoobi, H. and Yaghoobi, P. (2013), "Buckling analysis of sandwich plates with FGM face sheets resting on elastic foundation with various boundary conditions: an analytical approach", Meccanica, 48(8), 2019-2035. https://doi.org/10.1007/s11012-013-9720-0
  53. Zenkour, A.M. (2004), "Analytical solution for bending of cross-ply laminated plates under thermomechanical loading", Compos. Struct., 65(3-4), 367-379. https://doi.org/10.1016/j.compstruct.2003.11.012
  54. Zidi, M., Tounsi, A., Houari, M.S.A., Adda Bedia, E.A. and Anwar Beg, O. (2014), "Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory" Aerosp. Sci. Technol., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001

Cited by

  1. Nonlinear Flexural Analysis of Laminated Composite Panel Under Hygro-Thermo-Mechanical Loading — A Micromechanical Approach vol.13, pp.03, 2016, https://doi.org/10.1142/S0219876216500158
  2. The influence of hygrothermal effects on the cross-ply composite laminate with transverse cracking in transient mode vol.18, pp.1, 2017, https://doi.org/10.1051/meca/2016004
  3. Effect of porosity on vibrational characteristics of non-homogeneous plates using hyperbolic shear deformation theory vol.22, pp.4, 2016, https://doi.org/10.12989/was.2016.22.4.429
  4. Thermal stability analysis of solar functionally graded plates on elastic foundation using an efficient hyperbolic shear deformation theory vol.10, pp.3, 2016, https://doi.org/10.12989/gae.2016.10.3.357
  5. Free vibration analysis of composite cylindrical shells with non-uniform thickness walls vol.20, pp.5, 2016, https://doi.org/10.12989/scs.2016.20.5.1087
  6. A new non-polynomial four variable shear deformation theory in axiomatic formulation for hygro-thermo-mechanical analysis of laminated composite plates vol.182, 2017, https://doi.org/10.1016/j.compstruct.2017.09.029
  7. Nonsymmetric thermomechanical analysis of a functionally graded cylinder subjected to mechanical, thermal, and magnetic loads vol.40, pp.6, 2017, https://doi.org/10.1080/01495739.2017.1280380
  8. Influence of the porosities on the free vibration of FGM beams vol.21, pp.3, 2015, https://doi.org/10.12989/was.2015.21.3.273
  9. Thermal stability of functionally graded sandwich plates using a simple shear deformation theory vol.58, pp.3, 2016, https://doi.org/10.12989/sem.2016.58.3.397
  10. A refined theory with stretching effect for the flexure analysis of laminated composite plates vol.11, pp.5, 2016, https://doi.org/10.12989/gae.2016.11.5.671
  11. An efficient shear deformation theory for wave propagation of functionally graded material plates vol.57, pp.5, 2016, https://doi.org/10.12989/sem.2016.57.5.837
  12. Thermomechanical deflection and stress responses of delaminated shallow shell structure using higher-order theories vol.184, 2018, https://doi.org/10.1016/j.compstruct.2017.09.071
  13. A new nonlocal hyperbolic shear deformation theory for nanobeams embedded in an elastic medium vol.55, pp.4, 2015, https://doi.org/10.12989/sem.2015.55.4.743
  14. Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory vol.57, pp.4, 2016, https://doi.org/10.12989/sem.2016.57.4.617
  15. Assessment of non-polynomial shear deformation theories for thermo-mechanical analysis of laminated composite plates vol.27, pp.6, 2015, https://doi.org/10.12989/scs.2018.27.6.761
  16. Bending analysis of anti-symmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings vol.33, pp.1, 2015, https://doi.org/10.12989/scs.2019.33.1.081
  17. Bending analysis of anti-symmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings vol.33, pp.1, 2015, https://doi.org/10.12989/scs.2019.33.1.081
  18. Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory vol.24, pp.6, 2019, https://doi.org/10.12989/cac.2019.24.6.489
  19. On the modeling of dynamic behavior of composite plates using a simple nth-HSDT vol.29, pp.6, 2015, https://doi.org/10.12989/was.2019.29.6.371
  20. Analysis of Laminated Plates Subjected to Mechanical and Hygrothermal Environmental Loads Using Fifth-Order Shear and Normal Deformation Theory vol.12, pp.3, 2020, https://doi.org/10.1142/s1758825120500283