• Title/Summary/Keyword: expansion ratio

Search Result 1,154, Processing Time 0.03 seconds

A Study of Automobile Product Design using Hole Expansion Testing of High Strength Steels (고장력강의 구멍 확장 실험을 이용한 자동차부품 설계연구)

  • Park, B.C.;Bae, K.U.;Gu, S.M.;Jang, S.H.;Hong, S.H.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.6
    • /
    • pp.337-343
    • /
    • 2010
  • Current need of weight reduction in automotive part increases the application for high strength steel (HSS). The various types of high strength steels have been used to produce chassis part, control arms and trailing arms for weight reduction and increasing of fatigue durability such as dual phase steel (DP) and ferrite bainite steel (FB). But, DP and FB steels have proven to show inferiority in durability as well as press formability. Edge cracking occurred often in flange forming and hole expansion processes is the major failure encountered. This paper discussed the behavior of edge stretchability of high strength steel of DP and FB steels. Experimental works have been conducted to study the effect of punch clearance and burr direction on hole expansion ratio (HER). Also finite element simulation (FEM) has been preformed to clarify the mechanism of flange crack and support the experimental results on HER of DP and FB steels. It was simulated the whole process of blanking process following by hole expansion process and ductile fracture criterion named the modified Cockcroft-Latham model which was used to capture the fracture initiation. From the hole expansion tests and FEM simulation studies it was concluded that ferrite bainite steel showed better stretch-flangeability than dual phase steel. It was attributed to the lower work hardening rate of ferrite bainite steel than dual phase steel at the sheared edge.

Thermo-Mechanical Behavior of Short SMA Reinforced Polymeric Composite Using Shear tag Theory (전단지연 이론을 이용한 단섬유 형태의 SMA 보강 고분자 복합재료의 열변형 거동 해석)

  • Jeong, Tae-Heon;Lee, Dong-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.1001-1010
    • /
    • 1999
  • Thermo-mechanical behavior of discontinuous shape memory alloy(SMA) reinforced polymeric composite has been studied using modified shear lag theory and finite element(FE) analysis with 2-D multi-fiber model. The aligned and staggered models of short-fiber arrangement are employed. The effects of fiber overlap and aspect ratio on the thermomechanical responses such as the thermal expansion coefficient are investigated. It is found that the increase of both tensile stress(resistance stress) in SMA fiber and compressive stress in polymer matrix with increasing aspect ratio is the main cause of low thermal deformation of the composite.

The Quality Characteristics of Rice-Corn Cakes (옥수수 가루를 첨가한 Rice-Corn Cakes의 특성에 관한 연구)

  • 김영인
    • Korean journal of food and cookery science
    • /
    • v.17 no.5
    • /
    • pp.426-430
    • /
    • 2001
  • This experiment was carried out to investigate the effects of adding corn flour on the quality of rice cakes. Rice-corn cakes were prepared by adding corn flour at 25%, 50% and 75%, and the quality characteristics were measured. In the expansion ratio, springiness and cohesiveness of rice-corn cakes, the 25% group(C-25) was the highest and the 75% group(C-75) was the lowest. The higher the ratio of adding corn flour was, the lower the expansion ratio, springiness and cohesiveness were. In the hardness and chewiness of rice-corn cakes, the 75 % group(C-75) was the highest and the 25% group(C-25) was the lowest. But in the taste, texture and overall acceptance of rice-corn cakes, the 50% group(C-50) was the best.

  • PDF

Warm Compaction: FEM Analysis of Stress and Deformation States of Compacting Dies with Rectangular Profile of Various Aspect Ratio

  • Armentani, E.;Bocchini, G. F.;Gricri, G.;Esposito, R.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.191-192
    • /
    • 2006
  • The deformation under radial pressure of rectangular dies for metal powder compaction has been investigated by FEM. The explored variables have been: aspect ratio of die profile, ratio between diagonal of the profile and die height, insert and ring thickness, radius at die corners, interference, different insert materials, i. e. conventional HSS, HSS from powders, cemented carbide (10% Co). The analyses have ascertained the unwanted appearance of tensile normal stress on brittle materials, also "at rest", and even some dramatic changes of stress patterns as the die height increases with respect to the rectangular profile dimensions. Different materials behave differently, mainly due to difference of thermal expansion coefficients. Profile changes occur when the dies are heated up to the temperature required for warm compaction. The deformation patterns depend on compaction temperature and thermal expansion coefficients.

  • PDF

Basic Study on the Regenerator of Stirling Engine (I) -The influence of the heat exchange effectiveness of the regenerator on the engine power- (스털링기관용 재생기에 관한 기초연구(I) -재생기의 열교환 유효도가 기관 출력에 미치는 영향-)

  • 김태한;이정택;이시민
    • Journal of Biosystems Engineering
    • /
    • v.27 no.1
    • /
    • pp.33-38
    • /
    • 2002
  • The indicated power of Stirling engine was affected by the heat exchange effectiveness of the regenerator. The temperature difference of working fluid between the expansion and the compression space of Stilting engine depends on the heat exchange effectiveness of the regenerator. The influence of the temperature ratio of expansion space to compression space of Stirling engine on the indicated power was analyzed by using Schmidt analysis in this study. In the Stirring engine, as the temperature ratio increased, the indicated power generally decreased. Therefor, it is necessary to develope the regenerator of high effectiveness. The actual indicated power was shown 64.9 percent of the predicted indicated power in maximum and 47.2 percent of that in minimum due to increased dead volume of engine, the loss of flow friction and heat transfer in the regenerator.

Mix Design of Polymer Grouting Mortar for Prepacked Concrete Using Polymer Dispersions (폴리머 디스퍼션을 이용한 프리팩트 콘크리트용 주입 모르타르의 배합에 관한 연구)

  • Jo, Young-Kug;Kim, Wan-Ki
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.5
    • /
    • pp.85-91
    • /
    • 2008
  • Prepacked concrete has recently been used in the special constructions fields such as underwater concrete work, heavy-weight concrete work, underground structure work, partial repair works for damaged reinforced concrete structures. and polymer-modified mortars have been employed as grouting mortars for the prepacked concrete. The purpose of this study is to recommend the optimum mix design of polymer-modified grouting mortars for prepacked concrete. Polymer-modified mortars using SBR and EVA emulsions as admixture of grouting mortars for prepacked concrete are prepared with various mix proportions such as sand-binder ratio, fly ash replacement ratio, polymer-binder ratio. and tested for flowability, viscosity of grouting mortars, bleeding ratio, expansion ratio, flexural and compressive strengths of grouting mortars and compressive and tensile strengths of prepacked concretes. From the test results, it is apparent that polymer-modified mortars can be produced as grouting mortars when proper mix design is chosen. We can design the mix proportions of high strength mortars for prepacked concrete according to the control of mix design factors such as type of polymer, polymer-binder ratio, sand-binder ratio and fly ash replacement ratio. Water-binder ratio of plain mortars for a constant flowability value are in the ranges of 43% to 50%. SBR-modified mortar has a little water-binder ratios compared to those of plain mortar, however, EVA-modified mortar needs a high water-binder ratio due to a high viscosity of polymer dispersion. The expansion and bleeding ratios of grouting mortars are also controlled in the proper value ranges. Polymer-modified grouting mortars have good flexural. compressive and tensile strengths, are not affected with various properties with increasing fly ash replacement to cement and binder-sand ratio. In this study, SBR-modified grouting mortar with a polymer-binder ratio of 10% or less, a fly ash replacement of 10% to cement and a sand-binder ratio of 1.5 is recommended as a grouting mortar for prepacked concrete.

The Sensitivity Analysis of Thermal Expansion Breakage of Multi-layer Glazing in Building Envelope (건물 외피에 적용된 복층창의 열팽창 파손에 대한 민감도 분석 연구)

  • Yoon, Jong-Ho;Kim, Seung-Chul;Im, Kyung-Up;Oh, Myeong-Hwan
    • KIEAE Journal
    • /
    • v.14 no.6
    • /
    • pp.93-97
    • /
    • 2014
  • Curtain wall system of office buildings has recently become very common in Korea. As the multi-layer curtain glazing is exposed to outdoor environment, it is very subjected to direct environmental impact. Consequently, breakage and cracks of glazing due to heat expansion is frequently observed. This study explores various causes and aspects for destruction of multi-layer glazing. A sensitivity analysis was performed on the basis that thermal changes causes damage to the multi-layer glazing. Air temperature in air cavity within the multi-layer glazing was examined to find its effect on multi-layer glazing breakage. Analysis showed high deflection to depth ratio of 1:1.8 and that higher the aspect ratio, smaller is the deflection. Allowable pressure showed that the weakest value is for aspect ratio of 1:2.9. Sensitivity analysis by the area of the glazing showed that as area of glazing becomes higher, allowable pressure and deflection-depth ratio becomes smaller. For allowable pressure and allowable deflection-depth within air cavity, the glazing breakage occurred at least $107^{\circ}C$. The results from glazing breakage by thermal factor shows that it is hard to break the glazing with only an increase in air cavity temperature in multi-layer glazing applied in buildings.

A Study on the Additives of mixed Gas charged in Thermostatic Bulb for Expansion Valve (팽창밸브 개폐용 감온통 혼합가스의 첨가제 연구)

  • Kim, Si-Young;Ju, Chang-Sik;Koo, Su-Jin
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.126-132
    • /
    • 2014
  • The P-T characteristics of mixed refrigerant in thermostatic expansion valve sensing bulb were studied using R-134a and R-410A refrigerant. The characteristics of mixed refrigerant were investigated according to pressure variation and the variation of composition ratio of R-134A and R-410A in the temperature range of $-15^{\circ}C{\sim}15^{\circ}C$. The Thermodynamic characteristic values of the mixed refrigerants were identified using the characteristic value analysis program of mixed refrigerant(Refrop v9.0, NIST). The P-T characteristics in the case of the mixing ratio of 90:10 for R-410A and R-134A were the same result as R-22. And the physical properties showed similar results with R-22. The Maximum operating pressure(MOP) of mixed refrigerant showed a tendency to decrease with decreasing the mixing ratio of additive gases($N_2$ or He) gases. The characteristics in the case of the mixing ratio of 80:1 for mixed refrigerant and additive gases were the similar result as Reference refrigerant.(R-22 MOP, Sporlan company) In addition $N_2$ and He, both showed the same results. It was able to confirm that a MOP on the thermostatic expansion valve sensing bulb can be maintained by adjusting the mixing ratio of mixed refrigerant gases and additive gases.

Study on the Coefficient of Thermal Expansion for Composites Containing 2-Dimensional Ellipsoidal Inclusions (2차원 타원형의 충전제를 함유하는 복합재료의 열팽창 계수 연구)

  • Lee, Kee-Yoon;Kim, Kyung-Hwan;Jeoung, Sun-Kyoung;Jeon, Hyoung-Jin;Joo, Sang-Il
    • Polymer(Korea)
    • /
    • v.31 no.2
    • /
    • pp.160-167
    • /
    • 2007
  • This paper proposes a model for the solutions predicting the coefficient of thermal expansion of composites including fiber-like shaped$(a_1>a_2=a_3)$ and disk-like shaped$(a_1=a_2>a_3)$ inclusions like two dimensional geometries, which was analyzed by one axis and a single aspect ratio, $(\rho_\alpha=a_1/a_3)$. The analysis follows the procedure developed for elastic moduli by using the Lee and Paul's approach. The effects of the aspect ratio on the coefficient of thermal expansion of composites containing aligned isotropic inclusions are examined. This model should be limited to analyze the composites with unidirectionally aligned inclusions and with complete binding to each other of both matrix and inclusions having homogeneous properties. The longitudinal coefficients of thermal expansion $\alpha_{11}$ decrease and approach the coefficient of thermal expansion of filler, as the aspect ratios increase. However, the transverse coefficients of thermal expansion $\alpha_{33}$ increase or decrease with the aspect ratios.

Study on the Engineering Properties of 150MPa Ultra-high Strength Concrete

  • Jung, Sang-Jin;Yoshihiro, Masuda;Kim, Woo-Jae;Lee, Young-Ran;Kim, Seong-Deok;Ha, Jung-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.4
    • /
    • pp.113-122
    • /
    • 2010
  • In this study, 150MPa ultra-high-strength concrete was manufactured, and its performance was reviewed. As technically meaningful autogenous shrinkage reportedly occurs at a W/B ratio of 40% or less, although it occurs in all concrete regardless of the W/B ratio, the effects of the use of expansive admixture and shrinkage reducer, or of the friction and restraint of forms that may result in the effective reduction of autogenous shrinkage, were reviewed. As a result, considering the flow and strength characteristics, it was found that the slump flow time was shorter with expansive admixture, and shortest with shrinkage reducer. All specimens with $30kg/m^3$ expansive admixture showed high strength at early material age. Their strength decreased due to the expansion cracks when there was excessive use of expansive admixture, and the use of shrinkage reducer did not influence the change in the strength according to the material age. The expansive admixture had a shrinkage reduction effect of 80%, while the shrinkage reducer had a shrinkage reduction effect of 30%, indicating that the expansive admixture had a stronger effect. It seems that mixing the two will have a synergistic effect. The shrinkage reduction rate was highest when the W/B ratio was 20%. The form suppressed the expansion and shrinkage at the early period, and the demolding time did not significantly influence the shrinkage. The results of the study showed that the excessive addition of expansive admixture leads to expansion cracks, and the expansive admixture and shrinkage reducer have the highest shrinkage reduction effect when they are mixed.