• Title/Summary/Keyword: expansion predicted model

Search Result 139, Processing Time 0.023 seconds

Evaluation of turbulent SGS model for large eddy simulation of turbulent flow inside a sudden expansion cylindrical chamber (급 확대부를 갖는 실린더 챔버 내부 유동에 관한 LES 난류모델의 평가)

  • 최창용;고상철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.423-433
    • /
    • 2004
  • A large eddy simulation (LES) is performed for turbulent flow in a combustion device. The combustion device is simplified as a cylindrical chamber with sudden expansion. A flame holder is attached inside a cylindrical chamber in order to promote turbulent mixing and to accommodate flame stability. The turbulent sub-grid scale models are applied and validated. Emphasis is placed on the evaluation of turbulent model for the LES of complex geometry. The simulation code is constructed by using a general coordinate system based on the physical contravariant velocity components. The calculated Reynolds number is 5000 based on the bulk velocity and the diameter of inlet pipe. The predicted turbulent statistics are evaluated by comparing with the LDV measurement data. The Smagorinsky model coefficients are estimated and the utility of dynamic SGS models are confirmed in the LES of complex geometry.

Numerical Analysis of a Diffuser Flow with Expansion and Streamline Curvature (확대 및 유선곡률을 가진 디퓨저 흐름의 수치해석)

  • 이연원
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.595-608
    • /
    • 1998
  • A diffuser an important equipment to change kinetic energy into pressure energy has been studied for a long time. Though experimental and theoretical researches habe been done the understanding of energy transfer and detailed mechanism of energy dissipation is unclear. As far as numerical prediction of diffuser flows are concerned various numerical studies have also been done. On the contrary many turbulence models have constraint to the applicability of diffuser-like flows with expansion and streamline curvature. In order to obtain the reliability of k-$\varepsilon$ turbulence model modified combination turbulence models composed of the anisotropic k-$\varepsilon$model modified combination turbulence models composed of the anisotropic k-$\varepsilon$ model with Hanjalic-Launder's preferential normal strain and Pope's vortex stretching mechanism are proposed. The results of the present proposed models prove the fact that the coefficient of pressure and the shear stress are well predicted at the diffuser flow.

  • PDF

Analysis of Bragg Reflection with Two-Dimensional Finite Element Method (2차원 유한요소법을 이용한 파랑의 Bragg반사 해석)

  • Cho, Yong-Sik;Jeong, Woo-Chng
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.6
    • /
    • pp.677-684
    • /
    • 2002
  • In this study, a finite element model is employed to simulate the diffraction of waves caused by a change of water depths. The model is firstly applied to the estimation of reflection coefficients of monochromatic waves over a sinusoidally varying topography. Predicted coefficients are compared with those of the eigenfunction expansion method and laboratory measurements. A good agreement is observed. The model is then used to investigate effects of heights of bottom topography and number of ripples on variation of reflection coefficients of monocromatic water waves.

An Implementation Analysis of the National Health Insurance Coverage Expansion Policy in Korea: Application of the Winter Implementation Model (건강보험 보장성 확대정책의 집행분석: Winter의 정책집행모형의 적용)

  • You, Sooyeon;Kang, Minah;Kwon, Soonman
    • Health Policy and Management
    • /
    • v.24 no.3
    • /
    • pp.205-218
    • /
    • 2014
  • Background: Most studies on the national health insurance benefit expansion policy have focused on policy tools or decision-making process. Hence there was not enough understanding on how policies are actually implemented within the specific policy context in Korea which has a national mandatory health insurance system with a dominant proportion of private providers. The main objectives of this study is to understand the implementation process of the benefit coverage expansion policy. Unlike other implementation studies, we tried to examine both the process of implementation and decision making and how they interact with each other. Methods: Interviews were conducted with the ex-members of the Health Insurance Policy Review Committee. Medical doctors who implement the policy at the 'street-level' were also interviewed. To figure out major variables and the degree of their influences, the data were analyzed with Winter's Policy Implementation Model which integrates the decision making and implementation phases. Results: As predicted by the Winter model, problems in the decision making phase, such as conflicts among the members of committee, lack of applicable causal theories application of highly symbolic activities, and limited attention of citizen to the issue are key variables that cause the 'implementation failure.' In the implementation phase, hospitals' own financial interests and practitioners' dependence on the hospitals' guidance were barriers to meeting the policy goals of providing a better coverage for patients. Patients, the target group, tend to prefer physicians who prescribe more treatment and medicine. To note, 'fixers' who can link and fill the gap between the decision-makers and implementers were not present. Conclusion: For achieving the policy goal of providing a better and more coverage to patients, the critical roles of medical providers as street-level implementers should be noted. Also decision making process of benefit package expansion policy should incorporate its influence on the implementation phase.

Thermal Deformation Analysis of Exhaust Manifold for Turbo Diesel Engine in Consideration of Flange Design (터보 디젤 엔진용 배기매니폴드의 열변형 해석)

  • Kim, Beom-Keun;Lee, Eun-Hyun;Choi, Bok-Lok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.3 s.258
    • /
    • pp.338-343
    • /
    • 2007
  • Thermal deformation of cast iron exhaust manifold for turbo diesel engine is investigated by finite element analysis (FEA). The FE model included the temperature dependent material properties as well as the interactions between exhaust manifold, cylinder head and fasteners. It also considers the sliding behavior of the flanges of exhaust manifold on cylinder head when either expansion or contraction of the exhaust manifold exceeds the fastener pretension. The result of analysis revealed that remarkable thermal deformation along the longitudinal direction. Compressive plastic deformation at high temperature remained tensile stress in manifold and resulted in longitudinal contraction at ambient temperature. The amount of contraction at each fastener position was predicted and compared with experimental results. Analysis results revealed that the model predicted deformation qualitatively, but more elaborated cyclic hardening behavior would be necessary to predict the deformation quantitatively.

Performance Prediction on a Partially Admitted Single-Stage Axial-Type Turbine (부분분사에 의하여 작동하는 축류형터빈의 성능예측에 관한 연구)

  • Cho Chong-Hyun;Cho Soo-Yong;Kim Soo-Yong;Choi Sang-Kyu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.3
    • /
    • pp.10-17
    • /
    • 2005
  • A performance prediction model is developed for partially admitted axial-type turbines. Losses generated within the turbine are classified to the windage loss, expansion loss and mixing loss. The developed loss model is compared with an experimental result. The results predicted with the developed model agree well with the experimental results than those predicted with several other models because this model considers three different kinds of losses. Moreover, this model predicts well the performance even the partial admission is changed. So, this model could be applied to predict the performance of partially admitted axial turbine and it has a high accurate performance.

Numerical study on bearing behavior of pile considering sand particle crushing

  • Wu, Yang;Yamamoto, Haruyuki;Yao, Yangping
    • Geomechanics and Engineering
    • /
    • v.5 no.3
    • /
    • pp.241-261
    • /
    • 2013
  • The bearing mechanism of pile during installation and loading process which controls the deformation and distribution of strain and stress in the soil surrounding pile tip is complex and full of much uncertainty. It is pointed out that particle crushing occurs in significant stress concentrated region such as the area surrounding pile tip. The solution to this problem requires the understanding and modeling of the mechanical behavior of granular soil under high pressures. This study aims to investigate the sand behavior around pile tip considering the characteristics of sand crushing. The numerical analysis of model pile loading test under different surcharge pressure with constitutive model for sand crushing is presented. This constitutive model is capable of predicting the dilatancy of soil from negative to positive under low confining pressure and only negative dilatancy under high confining pressure. The predicted relationships between the normalized bearing stress and normalized displacement are agreeable with the experimental results during the entire loading process. It is estimated from numerical results that the vertical stress beneath pile tip is up to 20 MPa which is large enough to cause sand to be crushed. The predicted distribution area of volumetric strain represents that the distributed area shaped wedge for volumetric contraction is beneath pile tip and distributed area for volumetric expansion is near the pile shaft. It is demonstrated that the finite element formulation incorporating a constitutive model for sand with crushing is capable of producing reasonable results for the pile loading problem.

A Bonding Surface Behavior of Bi-metal Bar through Hydrostatic Extrusion (이중복합봉 정수압 압출시 접합면 거동에 관한 연구)

  • Park, Hun-Jae;Na, Gyeong-Hwan;Jo, Nam-Seon;Lee, Yong-Sin
    • Transactions of Materials Processing
    • /
    • v.7 no.1
    • /
    • pp.66-71
    • /
    • 1998
  • The present study is concerned with the hydrostatic extrusion process of copper-clad aluminium bar to investigate the bonding conditions as well as the basic flow characteristics. Considering the bonding mechanism of bi-metal contact surface as cold pressure welding the normal pressure and the contact surface expansion are selected as process parameters governing the bonding conditions, in this study the critical normal pressure required for the local extrusion-the protrusion of virgin surfaces by the surface expansion at the interface-is obtained using a slip line method and is then used as a criteron for the bonding. A rigid plastic finite element method is used to analyze the steady state extrusion process. The interface profile of bi-metal rod is predicted by tracking the paths of two particles adja-process. The interface profile of bi-metal rod is predicted by tracking the paths of two particles adja-cent to interface surface. The contact surface area ration and the normal pressure along the interface are calculated and compared to the critical normal pressure to check bonding. It is found that the model predictions are generally in good agreement with the experimental observations. The compar-isons of the extrusion pressure and interface profile by the finite element with those by experi-ments are also given.

  • PDF

Comparison of Spinal Canal Expansion Following Cervical Laminoplasty Based on the Preoperative Lamina Angle : A Simulation Study

  • Jung, Jong-myung;Jahng, Anthony L.;Hyun, Seung-Jae;Kim, Ki-Jeong;Jahng, Tae-Ahn
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.2
    • /
    • pp.229-237
    • /
    • 2021
  • Objective : Expansion in the spinal canal area (SCA) after laminoplasty is one of the critical factors to relieve the preoperative symptoms. No previous study has compared the increases in SCA achieved by open-door laminoplasty (ODL) and double door laminoplasty (DDL) according to the preoperative lamina angle (LA). This study was designed to clarify the relationship between the laminoplasty opening angle (OA)/laminoplasty opening size (OS) and increases in the SCA following ODL and DDL according to the preoperative LA using a simulation model. Methods : The simulation model was constructed and validated by comparing the clinical data of 64 patients who had undergone C3-C6 laminoplasty (43 patients with ODL and 21 patients with DDL). SCA expansion was predicted with a verified simulation model at various preoperative LAs (from 28° to 32°) with different OAs (40° to 44°) and OSs (10 mm to 14 mm) recruited from patient data. Results : The constructed simulation model was validated by comparing clinical data and revealed a very high degree of correlation (r=0.935, p<0.001). In this validated model, at the same OA, the increase in SCA was higher following ODL than following DDL in the usual LA (p<0.05). At the same OS, the increase in SCA was slightly larger following DDL than following ODL, but the difference was not significant (p>0.05). The difference was significant when the preoperative LA was narrower or much wider. Conclusion : Based on clinical data, a simulation model was constructed and verified that could predict increases in the SCA following ODL and DDL. When applying this model, prediction in SCA increase using the OS parameter was more practical and compatible with clinical data. Both laminoplasties achieved enough SCA, and there was no significant difference between them in the usual range.

Sealing design optimization of nuclear pressure relief valves based on the polynomial chaos expansion surrogate model

  • Chaoyong Zong;Maolin Shi;Qingye Li;Tianhang Xue;Xueguan Song;Xiaofeng Li;Dianjing Chen
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1382-1399
    • /
    • 2023
  • Pressure relief valve (PRV) is one of the important control valves used in nuclear power plants, and its sealing performance is crucial to ensure the safety and function of the entire pressure system. For the sealing performance improving purpose, an explicit function that accounts for all design parameters and can accurately describe the relationship between the multi-design parameters and the seal performance is essential, which is also the challenge of the valve seal design and/or optimization work. On this basis, a surrogate model-based design optimization is carried out in this paper. To obtain the basic data required by the surrogate model, both the Finite Element Model (FEM) and the Computational Fluid Dynamics (CFD) based numerical models were successively established, and thereby both the contact stresses of valve static sealing and dynamic impact (between valve disk and nozzle) could be predicted. With these basic data, the polynomial chaos expansion (PCE) surrogate model which can not only be used for inputs-outputs relationship construction, but also produce the sensitivity of different design parameters were developed. Based on the PCE surrogate model, a new design scheme was obtained after optimization, in which the valve sealing stress is increased by 24.42% while keeping the maximum impact stress lower than 90% of the material allowable stress. The result confirms the ability and feasibility of the method proposed in this paper, and should also be suitable for performance design optimizations of control valves with similar structures.