• Title/Summary/Keyword: expansion behavior

Search Result 862, Processing Time 0.028 seconds

Efficiency of stiffening plates in fabricated concrete-filled tubes under monotonic compression

  • Albareda-Valls, Albert;Carreras, Jordi Maristany
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.1023-1044
    • /
    • 2015
  • Concrete-filled tubes (CFT), formed by an outer steel tube filled with plain or reinforced concrete inside, have been increasingly used these recent decades as columns or beam-columns, especially for tall buildings in seismic areas due to their excellent structural response. This improved behavior is derived from the effect of confinement provided by the tube, since the compressive strength of concrete increases when being subjected to hydrostatic pressure. In circular CFTs under compression, the whole tube is uniformly tensioned due to the radial expansion of concrete. Contrarily, in rectangular and square-shaped CFTs, the lateral flanges become subjected to in-plane bending derived from this volumetric expansion, and this fact implies a reduction of the confinement effect of the core. This study presents a numerical analysis of different configurations of CFT stub columns with inner stiffening plates, limited to the study of the influence of these plates on the compressive behavior without eccentricity. The final purpose is to evaluate the efficiency in terms of strength and ductility of introducing stiffeners into circular and square CFT sections under large deformation axial loading.

Thermo-Mechanical Behavior of Short SMA Reinforced Polymeric Composite Using Shear tag Theory (전단지연 이론을 이용한 단섬유 형태의 SMA 보강 고분자 복합재료의 열변형 거동 해석)

  • Jeong, Tae-Heon;Lee, Dong-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.1001-1010
    • /
    • 1999
  • Thermo-mechanical behavior of discontinuous shape memory alloy(SMA) reinforced polymeric composite has been studied using modified shear lag theory and finite element(FE) analysis with 2-D multi-fiber model. The aligned and staggered models of short-fiber arrangement are employed. The effects of fiber overlap and aspect ratio on the thermomechanical responses such as the thermal expansion coefficient are investigated. It is found that the increase of both tensile stress(resistance stress) in SMA fiber and compressive stress in polymer matrix with increasing aspect ratio is the main cause of low thermal deformation of the composite.

A Study on the Creep Characteristics of Solder of 63 Sn-37Pb (63Sn-37Pb 땜납의 크리프 특성에 관한 연구)

  • 이억섭;김의상
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.138-144
    • /
    • 2004
  • The initiation and the propagation of solder joint crack depend on its environmental conditions, such as high temperature creep and thermal fatigue. Creep is known to be the most important factor for the mechanical failure of solder joints in micro-electronic components and micro-systems. This is mainly caused by the different thermal expansion coefficients of the materials used in the micro-electronic packages. To determine the reliability of solder joints and consequently the electronic components, the characterization of the creep behavior of this group of materials is crucial. This paper is to apply the theory of creep into solder joints and to provide related technical information needed for evaluation of reliability of solder joint to failure. 63Sn-37Pb solder was used in this study. This paper experimentally shows a way to enhance the reliability of solder joints.

Effects of Contact Damage and Residual Stress in Dental Layered Ceramics (치아응용을 위한 층상 세라믹스에서의 접촉손상 및 잔류응력의 영향)

  • 정종원;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.3
    • /
    • pp.288-293
    • /
    • 2000
  • Effects of contact damage and residual stress for two kinds of dental restorative layered ceramics, porcelain/alumina and porcelain/zirconia bilayers, were observed with Hertzian and Vickers indentation methods. Indentation stress-strain behavior of each material, strength degradation of the coating material, and crack propagation behavior in the coating layer after Vickers indentation were examined by an optical microscope. As a result, porcelain as coating materials showed the classical brittleness. It was inferred that damage and strength in two bilayer system were dependent on thermal expansion mismatch between the coating material and the substrate, which affected the strength degradation. Residual stress resulting from thermal expansion mismtch was formed in the coating layer, and specially in the case of porcelain/zirconia, residual stress was eliminated as coating thickness decreased.

  • PDF

Preparation of composite particles by Rapid Expansion of Supercritical fluid Solutions and Release behavior

  • Ryu, Han-Won;Kim, Jung-Hwan;Kim, Young-Do;Shin, Kun-Chul
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.09a
    • /
    • pp.117-121
    • /
    • 1998
  • The Rapid Expansion of supercritical fluid Solutions (RESS) process was applied to particles coating. Experiments were conducted in a fluidized bed with an internal nozzle in the center of the reaction tube. Microcapsules (mean particle size : 49$\mu\textrm{m}$) prepared by spray drying method were used as the core particles. Supercritical CO2 solutions of paraffin were expanded through the nozzle in to the bed that was fluidized by air. Surface morphology prepared particles was observed by SEM. For the inspection of particle size change, particle size distributions were measured before and after coating. The releasing behavior of Mg2+ ions inspected by AA.

  • PDF

The Effect of B addition on the High Temperature Behavior of Low Thermal Expansion Fe-29%Ni-17%Co Kovar Alloy (저열팽창성 Fe-29%Ni-17%Co 코바 합금의 고온 변형 거동에 미치는 B 첨가의 영향)

  • Kwon, S.H.;Park, J.H.;Kim, M.C.;Lee, K.A.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.491-492
    • /
    • 2008
  • The effect of B on the hot ductility of Fe-29Ni-17Co Kovar alloy and the mechanism of high temperature deformation behavior were investigated. Hot-tensile test was carried out at the temperature range of $900^{\circ}C-1200^{\circ}C$. Optical microscopy and scanning electron microscopy were used to investigate the microstructure and fracture during hot deformation. The hot ductility of Kovar alloy was drastically increased with the addition of Boron. The improvement of hot ductility results from the grain boundary migration mainly due to the dynamic recrystallization at lower temperature range($900^{\circ}C$).

  • PDF

The effect of micro parameters of PFC software on the model calibration

  • Ajamzadeh, M.R.;Sarfarazi, Vahab;Haeri, Hadi;Dehghani, H.
    • Smart Structures and Systems
    • /
    • v.22 no.6
    • /
    • pp.643-662
    • /
    • 2018
  • One of the methods for investigation of mechanical behavior of materials is numerical simulation. For simulation, its need to model behavior is close to real condition. PFC is one of the rock mechanics software that needs calibration for models simulation. The calibration was performed based on simulation of unconfined compression test and Brazilian test. Indeed the micro parameter of models change so that the UCS and Brazilian test results in numerical simulation be close to experimental one. In this paper, the effect of four micro parameters has been investigated on the uniaxial compression test and Brazilian test. These micro parameters are friction angle, Accumulation factor, expansion coefficient and disc distance. The results show that these micro parameters affect the failure pattern in UCS and Brazilian test. Also compressive strength and tensile strength are controlled by failure pattern.

The Effects of Solute Carbon Atoms in Ferrite on Austenitization and the Thermal Expansion Coefficients of Ferrite and Austenite (페라이트 내에 고용된 미량의 탄소가 오스테나이트화 거동 및 페라이트와 오스테나이트의 열팽창 계수에 미치는 영향)

  • Mun, Yumi;Park, Jihye;Kang, Singon;Jung, Jae-Gil;Lee, Sangmin;Lee, Young-Kook
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.6
    • /
    • pp.300-305
    • /
    • 2013
  • The effects of solute carbon atoms on the thermal expansion coefficients of ferrite and austenite as well as austenitization behavior were investigated by comparing carbon-free ferrite and carbon-containing ferrite. The thermal expansion coefficients and austenitization start and finish temperatures were measured using a dilatometer. Solute carbon atoms at elevated temperatures above the cementite dissolution temperature (650 K) decreased the thermal expansion coefficients of both ferrite and austenite. In addition, minute amount of carbon atoms dissolved in ferrite stimulated austenite nucleation during continuous heating, resulting in the lower starting temperature of austenitization.

A numerical stepwise approach for cavity expansion problem in strain-softening rock or soil mass

  • Zou, Jin-Feng;Yang, Tao;Ling, Wang;Guo, Wujun;Huang, Faling
    • Geomechanics and Engineering
    • /
    • v.18 no.3
    • /
    • pp.225-234
    • /
    • 2019
  • A numerical stepwise approach for cavity expansion problem in strain-softening rock or soil mass is investigated, which is compatible with Mohr-Coulomb and generalized Hoek-Brown failure criteria. Based on finite difference method, plastic region is divided into a finite number of concentric rings whose thicknesses are determined internally to satisfy the equilibrium and compatibility equations, the material parameters of the rock or soil mass are assumed to be the same in each ring. For the strain-softening behavior, the strength parameters are assumed to be a linear function of deviatoric plastic strain (${\gamma}p^*$) for each ring. Increments of stress and strain for each ring are calculated with the finite difference method. Assumptions of large-strain for soil mass and small-strain for rock mass are adopted, respectively. A new numerical stepwise approach for limited pressure and plastic radius are obtained. Comparisons are conducted to validate the correctness of the proposed approach with Vesic's solution (1972). The results show that the perfectly elasto-plastic model may underestimate the displacement and stresses in cavity expansion than strain-softening coefficient considered. The results of limit expansion pressure based on the generalised H-B failure criterion are less than those obtained based on the M-C failure criterion.