• Title/Summary/Keyword: expansion behavior

Search Result 862, Processing Time 0.034 seconds

Effects of Hardener and Extender Contents on Curing Behavior of Urea-Melamine-Formaldehyde Resin

  • Eom, Young-Geun;XU, Guang-Zhu;Lee, Young-Kyu;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.5
    • /
    • pp.42-48
    • /
    • 2008
  • This study was conducted to discuss the effects of hardener and extender contents on peak temperature, reaction enthalpy (${\Delta}H$), gelation time, viscosity change, and pH value in three types of UMF (urea-melamine- formaldehyde) resin with the help of perpHecT LogR meter, differential scanning calorimetry (DSC), and advanced rheometric expansion system (ARES), The results indicated that the pH value of Control A steeply decreased to 5,2 in the early stage but relatively remained constant thereafter as in Synthesis 1 and Synthesis 2, The peak temperature and time decreased as well, whereas ${\Delta}H$ and viscosity increased with the increase of hardener content. On the other hand, ${\Delta}H$ was not changed up to the extender content of 5% and then decreased with its further addition, And the pH value and peak temperature showed no change with the increase of extender content at the hardener content of 5% in three types of UMF resin, The effect of hardener content in this experiment, however, appeared more conspicuous in Control A than in the other two types of Synthesis 1 and Synthesis 2, These results might be caused by higher molecular weight with longer chains of methylene ($-CH_2-$) and methylene ($-CH_2-O-CH_2-$) ether bridges or much more branched chains in Control A.

Investigation of the orientational changes of monolayer on the water surface by measuring the displacement current. (변위전류 측정에 의한 수면상 단분자막의 배향변화 관찰)

  • Park, Tae-Gone;Song, Kyung-Ho;Park, Keun-Ho;Kwon, Young-Soo;Kang, Dou-Yol
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1320-1322
    • /
    • 1994
  • Photoisomerization characteristics of 4-octyl-4'-(5-carboxy-pentamethyleneoxy) azobenzene molecules (8A5H) were attained by measurement of absorbtion spectra. 8A5H in chroloform($6.0{\times}10^{-5}[M/l]$) shows trans to cis and cis to trans isomerization by irradiation of lights of 360[nm] and 450[nm] wavelength. From LB monolayer films of 8A5H, also the cis/trans photoisomerization was obtained and it has reversibility and memory characteristics. We are now trying to detect these properties of 8A5H electrically. On this paper, we investigated the structural changes of monolayer on the water surface by measuring the displacement current as a preliminary experiment. The measuring system was constructed at home-made Kuhn type LB(Langmuir-Blodgett) deposition apparatus. 8A5H solution was spreaded at the air-water interface and the currents induced by the dynamic behavior of molecules were measured when the molecules were pressed by barrier. The reversibility of displacement currents by compression and expansion was obtained from 8A5H molecules, which shows the compressed molecules have a tendency to disperse after the compression. From this experiment, we conclude that the behavior of molecules on water surface can be monitored electrically by using this current measuring method, and this method can also be applied to detect the photoisomerization of monolayers on water surface.

  • PDF

Probabilistic Behavior of In-plane Structure due to Multiple Correlated Uncertain Material Constants (상호 상관관계가 있는 다중 재료상수의 불확실성에 의한 평면구조의 확률론적 거동)

  • Noh Hyuk-Chun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.3
    • /
    • pp.291-302
    • /
    • 2005
  • Due to the importance of the parameter in structural response, the uncertain elastic modulus was located at the center of stochastic analysis, where the response variability caused by the uncertain system parameters is pursued. However when we analyze the so-called stochastic systems, as many parameters as possible must be included in the analysis if we want to obtain the response variability that can reach a true one, even in an approximate sense. In this paper, a formulation to determine the statistical behavior of in-plane structures due to multiple uncertain material parameters, i.e., elastic modulus and Poisson's ratio, is suggested. To this end, the polynomial expansion on the coefficients of constitutive matrix is employed. In constructing the modified auto-and cross-correlation functions, use is made of the general equation for n-th moment. For the computational purpose, the infinite series of stochastic sub-stiffness matrices is truncated preserving required accuracy. To demons4rate the validity of the proposed formulation, an exemplary example is analyzed and the results are compared with those obtained by means of classical Monte Carlo simulation, which is based on the local averaging scheme.

Mechanisms of thermally induced deflection of a long-span cable-stayed bridge

  • Zhou, Yi;Sun, Limin;Peng, Zhijian
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.505-522
    • /
    • 2015
  • Variation of temperature is a primary environmental factor that affects the behavior of structures. Therefore, understanding the mechanisms of normal temperature-induced variations of structural behavior would help in distinguishing them from anomalies. In this study, we used the structural health monitoring data of the Shanghai Yangtze River Bridge, a steel girder cable-stayed bridge, to investigate the mechanisms of thermally induced vertical deflection ($D_T$) at mid-span of such bridges. The $D_T$ results from a multisource combination of thermal expansion effects of the cable temperature ($T_{Cab}$), girder temperature ($T_{Gir}$), girder differential temperature ($T_{Dif}$), and tower temperature ($T_{Tow}$). It could be approximated by multiple linear superpositions under operational conditions. The sensitivities of $D_T$ of the Shanghai Yangtze River Bridge to the above temperatures were in the following order: $T_{Cab}$ > $T_{Gir}$ > $T_{Tow}$ > $T_{Dif}$. However, the direction of the effect of $T_{Cab}$ was observed to be opposite to that of the other three temperatures, and the magnitudes of the effects of $T_{Cab}$ and $T_{Gir}$ were found to be almost one order greater than those of $T_{Dif}$ and $T_{Tow}$. The mechanisms of the thermally induced vertical deflection variation at mid-span of a cable-stayed bridge as well as the analytical methodology adopted in this study could be applicable for other long-span cable-stayed bridges.

A Concise Design for the Irradiation of U-10Zr Metallic Fuel at a Very Low Burnup

  • Guo, Haibing;Zhou, Wei;Sun, Yong;Qian, Dazhi;Ma, Jimin;Leng, Jun;Huo, Heyong;Wang, Shaohua
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.734-743
    • /
    • 2017
  • In order to investigate the swelling behavior and fuel-cladding interaction mechanism of U-10Zr alloy metallic fuel at very low burnup, an irradiation experiment was concisely designed and conducted on the China Mianyang Research Reactor. Two types of irradiation samples were designed for studying free swelling without restraint and the fuel-cladding interaction mechanism. A new bonding material, namely, pure aluminum powder, was used to fill the gap between the fuel slug and sample shell for reducing thermal resistance and allowing the expansion of the fuel slug. In this paper, the concise irradiation rig design is introduced, and the neutronic and thermal-hydraulic analyses, which were carried out mainly using MCNP (Monte Carlo N-Particle) and FLUENT codes, are presented. Out-of-pile tests were conducted prior to irradiation to verify the manufacturing quality and hydraulic performance of the rig. Nondestructive postirradiation examinations using cold neutron radiography technology were conducted to check fuel cladding integrity and swelling behavior. The results of the preliminary examinations confirmed the safety and effectiveness of the design.

The Kinetics of Montmorillonite Expansion in the Treatment with Hexadecyltrimethylammonium (HDTMA와 반응하는 몬모릴로나이트의 팽창 속도론)

  • Lee Seung Yeop;Cho Won Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.299-307
    • /
    • 2004
  • Surfactant adsorption by two montmorillonite types with different interlayer cations of Ca and Na was characterized by examining the time dependence of surfactant behavior on the clay surfaces. Surfactants with different micelle concentration were conducted in our experiment to observe a nonequilibrium activity of cationic surfactant on the clay over reaction periods ranging from 0.1 min to 11 days. As compared with Ca-montmorillonite (SAz), a more active intrusion of surfactant molecules into the interlayers was found in Na-montmorillonite (SWy). During a short 'initiation' stage, the basal spacing of SWy montmorillonite increased rapidly with logarithmic time. For SAz montmorillonite, however, the abrupt basal spacing increase occurred at the later stage of the reaction. From the result, the difference in the adsorption behavior exhibited by the two montmorillonite types partly results from their intrinsic nature, that is, inorganic cations originally existing on the clay surfaces. Additionally, the micelle concentration of surfactants affects the development of organo-montmorillonite, especially, in the intercalant formation and stabilization under nonequilibrium.

The Crack Resistance for PSG and Pe-Sin Films in the Semiconductor Device (반도체소자의 표면보호용 PSG, PE-SIN박막의 항균열특성에 대한 연구)

  • Ha, Jung-Min;Shin, Hong-Jae;Lee, Soo-Woong;Kim, Young-Wug;Lee, Jung-Kyu
    • Korean Journal of Materials Research
    • /
    • v.3 no.2
    • /
    • pp.166-174
    • /
    • 1993
  • Abstract The crack resistance of PSG(Phosphosilicate Glass) and PE-SiN(Plasma Enhanced CVD S${i_2}{N_4}$)films deposited on aluminium thin films on Si substrate was analyzed in this study. PSG was deposited by AP-CVD and PE- SiN by PE-CVD. All the films underwent repeated heat cycles at 45$0^{\circ}C$for 30 min. Crack formation and development were examined between each heat cycle. The crack behavior was found to be closely related to the stresses in the films. The stress induced by the difference in thermal expansion behavior between the passivation layers and underlying aluminum film may cause the crack. Crack resistance decreases as the thickness of PSG films increases due to the high tensile stress of the films. Phosphorus in the PSG films releases tensile stress and consequently the stress of the films tends to show compressive stress. As a result, crack resistance increased as the concentratin of P in the PSG films increased. Crack resistance in the PE-SiN films also increased with compressive stress. An experimental model to predict crack generation in the PSG and PE-SiN films during heat cycle was suggested.

  • PDF

Assessing the anion type effect on the hydro-mechanical properties of smectite from macro and micro-structure aspects

  • Goodarzi, Amir R.;Akbari, Hamid R.
    • Geomechanics and Engineering
    • /
    • v.7 no.2
    • /
    • pp.183-200
    • /
    • 2014
  • The expansivity of clayey soils is a complicated phenomenon which may affect the stability of geotechnical structures and geo-environmental projects. In all common factors for the monitoring of soil expansion, less attention is given to anion type of pore space solutions. Therefore, this paper is concerned with the impact of various concentrations of different inorganic salts including NaCl, $Na_2SO_4$, and $Na_2CO_3$ on the macro and microstructure behavior of the expandable smectite clay. Comparison of the responses of the smectite/NaCl and smectite/$Na_2SO_4$ mixtures indicates that the effect of anion valance on the soil engineering properties is not very pronounced, regardless of the electrolyte concentration. However, at presence of carbonate as potential determining ions (PDIs) the swelling power increases up to 1.5 times compared to sulfate or chloride ions. The samples with $Na_2CO_3$ are also more deformable and show lower osmotic compressibility than the other mixtures. This demonstrates that the barrier performance of smectite greatly decreases in case of anions with the non-specific adsorption (e.g., $Cl^-$ and $SO{_4}^{2-}$) as the salinity of solution increases. Based on the results of the X-ray diffraction and sedimentation tests, the high soil volumetric changes upon exposure to carbonate is attributed to an increase in the repulsive forces between smectite basic unit layers due to the PDI effect of $CO{_3}^{2-}$ and increasing the pH level which enhance the buffering capacity of smectite. The study concluded that the nature of anion through its influence on the re-arrangement of soil microstructure and osmotic phenomena governs the hydro-mechanical parameters of expansive clays. It seems not coinciding with the double layer theory of the Gouy-Chapman double layer model.

Thermal Deformation Measurement of Notched Structure Using Global-local Multi-DIC System (전역-국부 다중 DIC 시스템을 이용한 노치 구조물의 열변형 계측)

  • Xin, Ruihai;Doan, Nguyen Vu;Goo, Nam Seo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.8
    • /
    • pp.617-626
    • /
    • 2021
  • During supersonic flight of vehicles, the thermal behavior of structures under high-temperature environment is important for thermal-structural design. In this study, full-field thermal deformation and stress concentration of the notched structure was performed using global-local multi-digital image correlation (multi-DIC) systems. This techniques were developed and implemented by multi-DIC systems consists of 2D DIC system and 3D DIC system. The specimen was heated in a heating chamber to achieve the thermal expansion behavior. Then the images of structure's deformation and stress concentration at various temperature were recorded and analyzed by multi-DIC system. Afterward, full-field thermal deformation of the notched structure was determined with DIC technique and stress concentration at the notched structure was calculated by further processing. Finite element analysis of the notched structure is performed in ABAQUSTM and the results of the experiments show good agreement with those obtained from simulation. The results achieved in this study show the efficiency of the muilti-DIC method in thermal deformation as well as stress concentration of notched structure.

Thermal buckling analysis of embedded graphene-oxide powder-reinforced nanocomposite plates

  • Ebrahimi, Farzad;Nouraei, Mostafa;Dabbagh, Ali;Rabczuk, Timon
    • Advances in nano research
    • /
    • v.7 no.5
    • /
    • pp.293-310
    • /
    • 2019
  • In this paper, thermal-buckling behavior of the functionally graded (FG) nanocomposite plates reinforced with graphene oxide powder (GOP) is studied under three types of thermal loading once the plate is supposed to be rested on a two-parameter elastic foundation. The effective material properties of the nanocomposite plate are considered to be graded continuously through the thickness according to the Halpin-Tsai micromechanical scheme. Four types of GOPs' distribution namely uniform (U), X, V and O, are considered in a comparative way in order to find out the most efficient model of GOPs' distribution for the purpose of improving the stability limit of the structure. The governing equations of the plate have been derived based on a refined higher-order shear deformation plate theory incorporated with Hamilton's principle and solved analytically via Navier's solution for a simply supported GOP reinforced (GOPR) nanocomposite plate. Some new results are obtained by applying different thermal loadings to the plate according to the GOPs' negative coefficient of thermal expansion and considering both Winkler-type and Pasternak-type foundation models. Besides, detailed parametric studies have been carried out to reveal the influences of the different types of thermal loading, weight fraction of GOP, aspect and length-to-thickness ratios, distribution type, elastic foundation constants and so on, on the critical buckling load of nanocomposite plates. Moreover, the effects of thermal loadings with various types of temperature rise are investigated comparatively according to the graphical results. It is explicitly shown that the buckling behavior of an FG nanocomposite plate is significantly influenced by these effects.