• 제목/요약/키워드: exothermic process

Search Result 154, Processing Time 0.042 seconds

Acid green-25 removal from wastewater by anion exchange membrane: Adsorption kinetic and thermodynamic studies

  • Khan, Muhammad Imran;Ansari, Tariq Mahmood;Zafar, Shagufta;Buzdar, Abdul Rehman;Khan, Muhammad Ali;Mumtaz, Fatima;Prapamonthon, Prasert;Akhtar, Mehwish
    • Membrane and Water Treatment
    • /
    • v.9 no.2
    • /
    • pp.79-85
    • /
    • 2018
  • In this work, batch adsorption of anionic dye acid green-25 (AG-25) from aqueous solution has been carried out at room temperature using anion exchange membrane (DF-120B) as a noval adsorbent. The effect of various experimental parameters such as contact time, membrane dosage, ionic strength and temperature on the adsorption of dye were investigated. Kinetic models namely pseudo-first-order, pseudo-second-order, Elovich, liquid film diffusion, Bangham and modified freundlich models were employed to evaluate the experimental data. Parameters like adsorption capacities, rate constant and related correlation coefficients for every model are calculated and discussed. It showed that adsorption of AG-25 onto DF-120B followed pseudo-first-order rate expression. Thermodynamic study indicates that adsorption of AG-25 onto DF-120B is an exothermic and spontaneous process.

Process Optimization for Preparing High Performance PAN-based Carbon Fibers

  • Yun, Jeong-Hyeon;Kim, Bo-Hye;Yang, Kap-Seung;Bang, Yun-Hyuk;Kim, Sung-Ryong;Woo, Hee-Gweon
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2253-2258
    • /
    • 2009
  • wet spun polyacrylonitrile (PAN) fiber precursors. The process variables chosen were treatment temperature, applied tension in stabilization process. The temperature profile of the stabilization was set on the basis of exothermic peaks of the differential scanning calorimetry (DSC) result. Both tensile strength and modulus increased with holding at onset temperatures of the exothermic peaks for extended duration, and with a higher heating rate up to the onset temperatures at a given applied tension among the experimental conditions. The increase in load monotonously increased the tensile modulus, on the other hand, the tensile strength was maximum at the load of 15 mg/filament (T15). The load 20 mg/ filament (T20) was considered to be exceeded to form oriented crystalline structure, possibly introducing more defects in the fiber than under load of T15. The sample CP3-T15 O5 H30 showed the best tensile properties among the samples experimented whose tensile properties are compatible with the commercialized grade of general purpose carbon fibers even at low carbonization temperature such as $800\;{^{\circ}C}$ (the carbonization temperature in the commercial process. 1300∼$1500\;{^{\circ}C}$).

Analysis of Discharge Characteristics and Fire Risk of Mobile Phone Batteries according to the Concentration of Salt Water (염수농도에 따른 휴대폰 배터리의 방전특성과 화재 위험성 분석)

  • Woo, Jin-Su;So, Soo-Hyun
    • Fire Science and Engineering
    • /
    • v.34 no.1
    • /
    • pp.66-71
    • /
    • 2020
  • The process of discharging batteries using salt water, when used for the disposal of a lithium-ion (Li-ion) batteries, is likely to cause a fire. However, there is a dearth of studies in the literature on the risk of fire while discharging mobile phone batteries in salt water. In order to investigate the possibility of fire by elucidating the discharge characteristics and the generation of heat, we conducted experiments by varying the concentration of the salt water, number of overlapping batteries, and type of the mobile phone batteries used as experimental specimen. The discharging voltage and the temperature of the batteries were measured, and the fire risk was predicted by analyzing the data. The results of the experiment showed that the higher the salt water concentration, the greater the discharge value of the mobile phone battery and the higher the exothermic temperature. Moreover, the exothermic temperatures of the overlapping batteries were higher than that of the single battery submerged in salt water. The highest exothermic temperature points of the battery occurred at the positive and negative poles.

Hazard Evaluation of Runaway Reaction in the Vinyl Acetate Polymerization Process (비닐아세테이트 중합공정에서 폭주반응 위험성 평가)

  • Lee, Keun-Won;Han, In-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.5
    • /
    • pp.46-53
    • /
    • 2011
  • The risk assessment of thermal behavior and runaway reaction cased by an exothermic batch process in manufacture of the vinyl acetate resin are described in the present paper. The aim of the study was to evaluate the risk of runaway reaction with operating parameters such as a reaction inhibitor, reaction temperature and a mount of methanol charged in the vinyl acetate polymerization process. The experiments were performed by a sort of calorimetry with the Multimax reactor system as a screening tool to investigate runaway reaction. From the experimental results, it was found that we could occur the auto acceleration for reaction of raw materials with operating parameters over $65^{\circ}C$ of reaction temperature in the vinyl acetate polymerization process.

The Fabrication of PVDF Organic Thin Films by Physical Vapor Deposition Method and Their Electrical Conductivity Phenomena (진공증착법을 이용한 PVDF 유기박막의 제조와 전기전도현상)

  • 임응춘;이덕출
    • Electrical & Electronic Materials
    • /
    • v.10 no.3
    • /
    • pp.217-225
    • /
    • 1997
  • In this study, the PVDF organic thin film was fabricated by the physical vapor deposition method to be dry-process. The distance of heat source and substrate was 5[cm] and the temperature of substrate was 30[.deg. C], when the pressure had reached 2.0 x 10$^{-5}$ [Torr], the temperature of heat source was reached to 285[.deg. C] to heat at 6-8[.deg. C/min] rate, the shutter was opened and deposition was started. TG-DTA(Thermogravimetric-Differential Thermal Analysis) spectrum of PVDF pellets showed that endothermic peak arose at 170[.deg. C] and exothermic peak at 524[.deg. C], but that of thin PVDF film showed that endothermic peak arose at 145[.deg. C] and exothermic peak at 443[.deg C]. The current density was increased linearly with increasing voltage but increased nonlinearly with higher electric field than 250[kV/cm] and activation energy was about 0.667[eV] at the temperature of 30-90[.deg. C].

  • PDF

Synthesis and characterization of a new energy material (guanidinium dinitramide) with crystallization solvent

  • Kim, Wooram;Park, Mijung;Park, Yeonsoo;Kwon, Younja;Jo, Youngmin
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.153-160
    • /
    • 2018
  • An environmentally favorable (chlorine-free) solid oxidizer, guanidinium dinitramide [GDN; $NH_2C(NH_2)NH_2N(NO_2)_2$], was newly synthesized from guanidine carbonate [$NH_2C(=NH)NH_2{\cdot}1/2H_2CO_3$]. Two different crystalline forms (${\alpha}-type$ and ${\beta}-type$) appeared according to the applied solvents and synthesis conditions. Moisture, during extraction, might become trapped in a crystal between inner molecules. Therefore, despite having the same chemical composition, Raman-IR and TGA-DSC revealed different physical characteristics of the two forms. Peaks of Raman shift near $1000cm^{-1}$ implied different chemical structures. Thermal analysis revealed an exothermic temperature $155.7^{\circ}C$ for ${\alpha}-type$ but one of $191.6^{\circ}C$ for ${\beta}-type$. The caloric value of ${\alpha}-type$ was 536.4 J/g, which was 2.5 times larger than that of the ${\beta}-type$, which was 1310 J/g. While the synthesized GDN of ${\alpha}-type$ showed a steep exothermic decomposition, the ${\beta}-type$ was slowly decomposed after melting through an endothermic process. This work implied that despite of the same molecular formula some different core thermal properties would appear depending on synthesis conditions.

Spherical Particles Formation in Lubricated Sliding Contact -Micro-explosion due to the Thermally-activated Wear Process-

  • Kwon, O.K.
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.1-9
    • /
    • 1995
  • The mechanism of various spherical particles formation from wide range of tribo-systerns is suggested and deduced by the action of micro-explosion on the basis of the thermally-activated wear theory, in which the flash temperature at contact could be reached clearly upto the material molten temperature due to the secondary activation energy from the exothermic reactions involving lubricant thermo-decomposition, metals oxidation, hydrogen reactions and other possible complex thermo-reactions at the contacts. Various shapes of spherical particles generated from the tribosystem can be explained by the toroidal action of micro-explosion accompanied with the complex thermo-chemical reactions at the contact surfaces or sub-surfaces.

Effect of Polymer Content on Synthesis Process and Microstructure of Alumina-Zirconia Composite (알루미나-지르코니아 복합체의 제조공정 및 미세구조에 미치는 폴리머 첨가의 영향)

  • 이상진;권명도;이충효;조경식
    • Journal of Powder Materials
    • /
    • v.10 no.5
    • /
    • pp.310-317
    • /
    • 2003
  • Two-component ceramic (alumina-zirconia) composites were fabricated by a soft-solution process in which polyethylene glycol (PEG) was used as a polymeric carrier. Metal salts and PEG were dissolved in ethyl alcohol without any precipitation in 1:1 volume ratio of alumina and zirconia. In the non-aqueous system, the flammable solvent made explosive, exothermic reaction during drying process. The reaction resulted in formation of volume expanded, porous precursor powders by a vigorous decomposition of organic components in the precursor sol. The PEG content affected the grain size of sintered composites as well as the morphology of precursor powders. The difference of microstructure in sintered composite was attribute to the solubility and homogeneity of metal cations in precursor sol. At the optimum amount of the PEG polymer, the metal ions were dispersed effectively in solution and a homogeneous polymeric network was formed. It made less agglomerated particles in the precursor sol and affected on uniform grain size in sintered composite.

Process Optimization for the Laser Cutting of Cold Rolled STS Sheet (냉연 스테인리스강판의 레이저 절단 특성)

  • 이기호;김기철
    • Journal of Welding and Joining
    • /
    • v.14 no.5
    • /
    • pp.59-68
    • /
    • 1996
  • This study was aimed to characterize the laser cutting process for the cold rolled stainless steel sheet. The principal process parameters of the cutting process were applied to both the continuous wave form and the pulsed wave form for the laser output mode. The laser-oxygen cutting process and the laser-nitrogen cutting process were also considered to characterize the quality and efficiency of the cutting process. The laser-oxygen cutting process revealed the better productivity than the laser-nitrogen cutting process, since the laser energy and the exothermic oxidation energy exerted on the laser-oxygen cutting process simultaneously during the entire cutting process. However, the straightness of the cutting section, which was considered as the most important factors, was inferior to that of the laser-nitrogen cutting process due to the formation of chromum oxide on the cutting surface. Frequency and duration of the pulsed wave form act as the main factors for the better quality, When the frequency increased from 100 Hz to 200 Hz and the duty increased from 20% to 40%, the quality factors such as the height of dross and the surface roughness were improved remarkably. The increase in the frequency from 200 Hz to 300 Hz, on the other hand, revealed the less effective in the cutting quality.

  • PDF

Epoxidized Polybutadiene as a Thermal Stabilizer for Poly(3-hydroxybutyrate). II. Thermal Stabilization of Poly(3-hydroxybutyrate) by Epoxidized Polybutadiene

  • Choi, Ju-Yol;Lee, Jong-Keun;You, Young;Park, Won-Ho
    • Fibers and Polymers
    • /
    • v.4 no.4
    • /
    • pp.195-198
    • /
    • 2003
  • Epoxidized polybutadiene (EPB) was prepared by polybutadiene (PB) with m-chloroperbenzoic acid (MCPBA) in homogeneous solution. EPB was blended with poly(3-hydroxybutyrate) (PHB) up to 30 wt% by solution-precipitation procedure. The thermal decomposition of PHB/EPB blends was studied by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and differential thermal analysis (DTA). The thermograms of PHB/EPB blends contained a two-step degradation process, while that of pure PHB sample exhibited only one-step degradation process. This degradation behavior of PHB/EPB blends, which have a higher thermal stability as measured by maximum decomposition temperature and residual weight, is probably due to crosslinking reactions of the epoxide groups in the EPB component with the carboxyl chain ends of PHB fragments during the degradation process, and the occurrence of such reactions can be assigned to the exothermic peaks in their DTA thermograms.