• Title/Summary/Keyword: exit angle

Search Result 294, Processing Time 0.023 seconds

Numerical Study on the Effects of Pressure Wave Propagation for Tunnel Entrance Shape Change in High-Speed Railways (고속철도의 터널입구 형상변황에 따른 압력파동 현상에 관한 수치적 연구)

  • 목재균;백남욱;유재석;최윤호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.50-59
    • /
    • 1997
  • When a front head of train enters a tunnel at a high speed, compression wave is generated at tunnel entrance due to the confinement effect and propagated along the tunnel with sound of speed. The propagated compression wave is reflected at tunnel exit due to abrupt pressure change at passage. The reflected wave is expansion pressure wave. And when the rear head of train goes through the tunnel entrance, another expansion pressure wave is generated and propagated along the tunnel. The pressure drop occurs seriously around train when the two expansion pressure waves come cross on train in the tunnel. In order to reduce the pressure drop, the compression wave front must be controlled because the intensity and magnitude of pressure drop is nearly proportional to that of compression wave at tunnel entrance. This study relates to reduction of the pressure wave gradient with respect to tunnel entrance shape change with various kind of angle and rounding. The results show characteristics of wave propagation in tunnel, usefulness of characteristic curve to estimate proper time domain size in numerical study and measuring time in actual experiment. Also rounding is contributed to improve pressure wave front even if its radius is very small at tunnel entrance. In order to improve of pressure wave front at tunnel entrance, proper angle is prefered to rounding with big radius and an angle of around 14$^{\circ}$ is recommended according to this simulations, And it is expected to reduce additional pressure drop in tunnel when the location and the size of the internal space for attendant equipment are considered in advance.

  • PDF

A Study on Operation Characteristics of Co-flow Fluidic Thrust Vector Control under Over-expanded Jet Condition (동축류 이차유동 분사를 이용한 초음속 과팽창 제트유동의 유체역학적 추력방향제어 작동특성 연구)

  • Heo, Jun-Young;Jeon, Dong-Hyun;Lee, Yeol;Sung, Hong-Gye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.5
    • /
    • pp.416-423
    • /
    • 2011
  • The purpose of this research is to investigate the operation characteristics of fluidic thrust vector control using injection of the control flow parallel to the main jet direction; Co-flow injection. The technique bases on the Coanda effect of flow. Both numerical and experimental studies were conducted to investigate operation parameters; flow structure, the jet deflection angle, and shock effects near the nozzle exit. While the total pressure of main jet is the range of 300 to 790 kPa, the total pressure of control flow varies from 120 to 200 kPa. The jet deflection angle and thrust coefficient have linear relation with the pressure ratio(PR) of main jet to control flow in 0.15 < PR < 0.4 but show their limit above PR = 0.4.

Application of femtosecond laser hole drilling with vibration for thin Invar alloy using fine metal mask in AMOLED manufacturing process (AMOLED 제조공정에 사용되는 Fine Metal Mask 용 얇은 Invar 합금의 진동자를 이용한 펨토초 레이저 응용 홀 드릴링)

  • Choi, Won-Suk;Kim, Hoon-Young;Shin, Young-Gwan;Choi, Jun-ha;Chang, Won-Seok;Kim, Jae-Gu;Cho, Sung-Hak;Choi, Doo-Sun
    • Design & Manufacturing
    • /
    • v.14 no.3
    • /
    • pp.44-49
    • /
    • 2020
  • One of display trends today is development of high pixel density. To get high PPI, a small size of pixel must be developed. RGB pixel is arranged by evaporation process which determines pixel size. Normally, a fine metal mask (FMM; Invar alloy) has been used for evaporation process and it has advantages such as good strength, and low thermal expansion coefficient at low temperature. A FMM has been manufactured by chemical etching which has limitation to controlling the pattern shape and size. One of alternative method for patterning FMM is laser micromachining. Femtosecond laser is normally considered to improve those disadvantages for laser micromachining process due to such short pulse duration. In this paper, a femtosecond laser drilling for thickness of 16 ㎛ FMM is examined. Additionally, we introduce experimental results for controlling taper angle of hole by vibration module adapted in laser system. We used Ti:Sapphire based femtosecond laser with attenuating optics, co-axial illumination, vision system, 3-axis linear stage and vibration module. By controlling vibration amplitude, entrance and exit diameters are controllable. Using vibrating objective lens, we can control taper angle when femtosecond laser hole drilling by moving focusing point. The larger amplitude of vibration we control, the smaller taper angle will be carried out.

Development of Hybrid/Dual Swirl Jet Combustor for a MGT (Part II: Numerical Study on Isothermal Flow) (마이크로 가스터빈용 하이브리드/이중 선회제트 연소기 개발 (Part II: 비반응 유동에 관한 수치해석))

  • Mun, Sun-Yeo;Hwang, Cheol-Hong;Lee, Kee-Man
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.70-79
    • /
    • 2013
  • The isothermal flow structure and mixing characteristics of a hybrid/dual swirl jet combustor for micro-gas turbine (MGT) were numerically investigated. Location of pilot burner, swirl angle and direction were varied as main parameters with the identical thermal load. As a result, the variations in location of pilot nozzle, swirl angle and direction resulted in the significant change in turbulent flow field near burner exit, in particular, center toroidal recirculation zone (CTRZ) as well as turbulent intensity, and thus the flame stability and emission performance might be significantly changed. With the comparison of experimental results, the case of swirl angle $45^{\circ}$ and co-swirl flow including optimum location of pilot burner were chosen in terms of the flame stability and emissions for the development of hybrid/dual swirl jet combustor.

Effect of Swirl Cup Geometry on Spray Characteristics in Gas Turbine Engine (가스터빈 연소기의 스월컵 형상이 분무특성에 미치는 영향)

  • 김동준;박종훈;고현석;윤영빈
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.2
    • /
    • pp.29-36
    • /
    • 2002
  • Experiments have been performed to investigate the effect of secondary venturi tip angle on flow and spray characteristics in gas turbine combustor with a swirl cup assembly. Three variations of secondary venturi tip angle are made: converging, straight and diverging angles. It is found that the variation of venturi tip angle results in the significant changes of flow and spray characteristics in gas turbine combustors, such as the size and location of recirculation zones. drop size and mass distribution affecting combustion efficiency and NOx emissions. In diverge case, central toroidal recirculation zone(CTRZ) exists near the exit, which is known to be beneficial for flame stability. But in converge case, the finest SMD distribution and uniform mass distribution are found and CTRZ is longer than other cases. Consequently, high combustion efficiency and low pollutant emission are expected in converge case.

CFD Analysis on the Flow Characteristics of Diffuser/Nozzles for Micro-pumps (마이크로 펌프용 디퓨져/노즐의 유동 특성에 관한 CFD 해석)

  • Kim Donghwan;Han Dong-Seok;Jeong Siyoung;Hur Nahmkeon;Yoon Seok-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.6
    • /
    • pp.544-551
    • /
    • 2005
  • The flow characteristics have been numerically investigated for various shapes of the diffuser/nozzles which are used for a valveless micro-pump. The important parameters considered in this study are the throat width ($15\~120\mu$m), the taper angle ($3.15\~25.2^{\circ}$), and the diffuser length ( $600\~4,800\mu$m), and the size of the middle chamber ($1\~16mm^2$). To find the optimal values for these parameters, steady state calculations have been performed assuming the constant pressure difference between the inlet and exit of the flow For the taper angle and the throat width, it is found that there exists an optimum at which the net flow rate is the greatest. The optimal taper angle is in the range of $10\~20^{\circ}$ for all the pressure differences; and the throat width indicates an optimal value near $75\mu$m for the case of 35 kPa pressure difference. The net flow rate is also influenced by the size of the middle chamber. With decreasing chamber size, the net flow rate is reduced because of the interference between two streams flowing into the middle chamber. The unsteady pulsating flow characteristics for a micro-pump with a given diffuser/nozzle shape have been also investigated to show the validity of the steady state parametric study.

Performance Evaluation of Steel and Composite Safety Barrier for Bridge by Vehicle Crash Simulation (차량 충돌 시뮬레이션에 의한 강재 및 복합소재 교량용 방호울타리 성능 비교)

  • Kim, Seung-Eock;Cho, Pan-Kyu;Hong, Kab-Eui;Jeon, Shin-Youl
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.2
    • /
    • pp.175-182
    • /
    • 2010
  • A composite safety barrier for bridge has been developed and the performance of the composite safety barrier for bridge has been compared with the steel safety barrier for bridge through computer simulation. As the structural strength performance, the composite safety barrier for bridge is superior to the steel safety barrier for bridge according that the deformation of the composite safety barrier for bridge is 17.0% of that of the steel safety barrier for bridge. As the passenger protection performance, the composite safety barrier for bridge is superior to the steel safety barrier for bridge according that THIV and PHD of the composite safety barrier for bridge are 47.1% and 49.0% respectively of those of the steel safety barrier for bridge. As the behavior of the vehicle after crash, the composite safety barrier for bridge is superior to the steel safety barrier for bridge showing the increased exit velocity and the reduced exit angle. Both of the steel and composite safety barrier for bridge are not scattered in the analysis.

An Experimental Study on the Effects of Tabs and Small Proturbances Inside Nozzle on Supersonic Jet Flowfield (노즐 탭과 노즐 내부 낮은 돌출부가 초음속 제트유동장에 미치는 영향에 관한 연구)

  • Jin, Won-Jin;Cho, Chang-Kwon;Lee, Yeol;Yoon, Woong-Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.24-31
    • /
    • 2002
  • The effects of vortex generators, in the form of small delta-shaped tabs or thin tapes at an axi-symmetric supersonic nozzle exit, on the characteristics of supersonic jet flowfields are investigated by Schlieren images and Pitot-tube measurements. Small tabs as small as 1 % of the nozzle exit area can introduce streamwise vortices and produce a significant effect on the jet flowfield downstream of the nozzle. The effect is stronger for the cases of under-expanded jet than over- and perfect-expanded cases, introducing a larger flow entrainment. The effects of the angle of tabs with respect to the flow direction are also investigated, and for over-expanded jet cases, it is found that the tabs bended toward upstream can weaken the interaction strength and remove the Mach disc in the jet flowfield. Introduction of small proturbances inside the nozzle surface by attachment of thin tapes is also found to change the pressure distribution in the circumferential direction of the flowfield. Its effect is also found to be dependent on the jet expansion ratio.

Flow Characteristics inside a Throttle Valve Used to Control the Intake Air Flow in Engines (엔진의 흡기 공기량 조절용 스로틀 밸브에서의 유동 특성)

  • Kim, Sung-Cho;Kim, Cheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.91-98
    • /
    • 1999
  • This paper describes the air flow characteristics inside the throttle valve. Tow-dimensional steady incompressible Navier-Strokes equation are solved numerically with embedding the conceopt of the artificial compressibility and adopting the Baldwin-Lomax turbulence model. With varying the valve opening angles(the Reynolds number )such as 15$^{\circ}$(5000) , 45$^{\circ}$(3000) , 75$^{\circ}$(7000) and 90$^{\circ}$(10000), respectively. tow cases, with a valve shaft and without one, are analysed. The pressure loss between the entrance and exit is severe at 15$^{\circ}$, 100 times as larger as that of 90$^{\circ}$ case, which also depends much on the existece of the valve shaft. The counter rotating vortices are formed over the valve plate with the shaft at only 75$^{\circ}$. They are smally and very large scale in front and back of the valve shaft , respectively. The velocity profiles of 15$^{\circ}$ and 90$^{\circ}$ at the exit are almost symmetric to the horizontal center line, however, the symmetricity is no longer maintained at 45$^{\circ}$ and 75$^{\circ}$ , and in addition, the flow at 75$^{\circ}$ is enforced a lot below center line. The pressure distribution on the walls is largely changed near the valve shaft, and its magnitude becomes great as the valve angle decreases.

  • PDF

Design and Evaluation of Vaned Pipe Bends of Liquid Propellant for Satellite Launch Vehicles (소형위성 발사체용 액체 추진제 곡관 배관 설계 및 유동 성능 해석)

  • Lee Hee Joon;Han Sang Yeop;Ha Sung Up;Kim Young Mog
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.1
    • /
    • pp.53-60
    • /
    • 2005
  • The use of pipe-bends brings about non-uniform flows at the exit of them due to the velocity difference between inner and outer flows inside the bend. These phenomena may cause turbopump of satellite launch vehicle to run off-design and reduce its efficiency, and also introduce unstable influx of propellants to engine manifold after passing through a turbopump. In order to improve the uniformity of flow at the bend exit, certain turning vanes are set up in the bend pipe normally. Correspondingly the design is an $90^{\circ}\;and\;45^{\circ}$ bend pipes that incorporate with the maximum three turning vanes. All designs were analyzed with numerical analysis by solving the Navier-Stokes equations in three dimensions in case of each respective fuel and oxidizer. Evaluations of the vaned pipe bends designs were accomplished by the velocity magnitude distributions and the predicted pressure drops. We could find that the more vaned bend pipe and larger angle pipe under consideration effectively, the more uniform velocity magnitude of the bend and pressure losses.