• Title/Summary/Keyword: exit angle

Search Result 294, Processing Time 0.022 seconds

Supersonic Axisymmetric Minimum Length Nozzle Conception at High Temperature with Application for Air

  • Zebbiche, Toufik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.1-30
    • /
    • 2008
  • When the stagnation temperature of a perfect gas increases, the specific heats and their ratio do not remain constant any more and start to vary with this temperature. The gas remains perfect; its state equation remains always valid, except, it is named in more by calorically imperfect gas. The aim of this work is to trace the profiles of the supersonic axisymmetric Minimum Length Nozzle to have a uniform and parallel flow at the exit section, when the stagnation temperature is taken into account, lower than the dissociation threshold of the molecules, and to have for each exit Mach number and stagnation temperature shape of nozzle. The method of characteristics is used with the algorithm of the second order finite differences method. The form of the nozzle has a point of deflection and an initial angle of expansion. The comparison is made with the calorically perfect gas. The application is for air.

Vortical structures from controlled circular jet (원형제트의 제어를 통한 보텍스 구조)

  • Lee, Dae-Il;Kim, Jung-Woo;Choi, Hae-Cheon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2708-2712
    • /
    • 2008
  • The objective of this work is to study various vortical structures from controlled circular jet such as trifurcating and blooming jets. The numerical simulations of flow from a circular jet are carried out at $Re_D=4300$ based on the jet-exit velocity and jet diameter using large eddy simulation with the dynamic Smagorinsky model in a cylindrical coordinate system. The excitation for the controlled jet is achieved by combining axial and helical excitations. The axial velocity controlled by blowing and suction at the jet exit has several peaks in their cycle with respect to ratio of axial to helical excitations. This active control changes the spreading angle and vortical structures in the downstream region.

  • PDF

A Study on the Rotary Absorptive Dehumidifer (회전형 흡수식 제습기에 관한 연구)

  • Kim, Young-Il;Kim, Hyo-Kyung
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.15 no.2
    • /
    • pp.169-181
    • /
    • 1986
  • A numerical analysis has been conducted on the dehumidification phenomena of rotary absorptive dehumidifier. Parameters that affect the dehumidification efficiency, such as regeneration temperature, humidity, rotor angular velocity, air flow rate and regeneration section angle are studied and optimum driving conditions are determined from the results, Furthermore three new types of dehumidification method are developed to improve the efficiency They are named MODE 2, 3 and 4, while the present one MODE 1. Cooling zone has been constructed between regeneration and process Bone in MODE 2 and as a result exit temperature of the process air decreases. MODE 3 an improvement of MODE 2, recirculates the cooling air into the regeneration zone and regeneration input as well as exit temperature decreases. In MODE 4, some of tee regeneration air is recirculated and it cuts down the regeneration input. Among them MODE 3, showed the best dehumidification efficiency.

  • PDF

ATOMIZATION PROCESS OF DIESEL FUEL SPRAY IN THE INITIAL STAGE OF INJECTION

  • KO K. N.;LEE C. S.;HUH J. C.
    • International Journal of Automotive Technology
    • /
    • v.6 no.1
    • /
    • pp.9-14
    • /
    • 2005
  • An experimental investigation has been carried out to reveal the atomization process of the diesel fuel spray. The spray injected through a single hole nozzle was taken by a camera on the opposite side of a stroboscope for macroscopic observation or a nanolite for microscopic observation. The effect of nozzle aspect ratio was analyzed with disintegration phenomena of the diesel spray. Based on the enlarged spray photograph, atomization process was observed in detail and further the spray cone angle was measured under various ambient pressures. The result shows that atomization of diesel spray in early stage of injection is mainly progressed in the vicinity of spray periphery region except the region close to the nozzle exit and spray head region. The spray cone angle is nearly constant under the pressurized condition, while it decreases with elapsing time under the atmospheric condition.

Forming Simulation of the Extrn-Bending Process of the Angle Product with '${\wedge}$' Section ([ '${\wedge}$' ]단면 앵글 구조재의 압출굽힘 가공에 관한 성형해석)

  • Lee K. K.;Jin I. T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.346-349
    • /
    • 2004
  • In the previous experimental study about extru-bending of angle product, the bending of extruded angle products with the '${\wedge}$' section and 'ㄱ' section can be abtained by the hot metal extru-bending machine with the two punches moving in the different velocity. The bending curvature can be controlled by the different velocity of billets through the two-hole container. This paper describes simulation of extru-bending process by the difference of punch velocities. The result of the forming simulation by $DEFORM^{TM}-3D$ shows that the bending phenomenon at the die exit during extrusion can be abtained by the two punches moving in the different velocity. And it is possible to design extrusion dies and to control the curvature of product through the simulation of extru-bending process by analysis

  • PDF

An Experimental Study of Condensation in Plate Heat Exchangers with R-410A (R-410A를 적용한 판형 열교환기의 응축 성능에 관한 실험적 연구)

  • Byun, J.H.;Lee, K.J.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.304-310
    • /
    • 2000
  • The experimental study has been conducted on heat transfer characteristics of the plate heat exchangers(PHE) by several researchers. However most of all were focused on a gasket-type plate heat exchanger. Therefore further studies are need for a brazed-type. In the present study, a brazed type plate heat exchanger was tested at a chevron angle of $70^{\circ},\;55^{\circ}$ and $45^{\circ}$ with R-22 and R-410A. Condensation temperatures were $24.5^{\circ}C$, and mass flux was ranged from 35 to $60kg/m^2s$. The inlet and exit conditions are in a superheated vapor and subcooled liquid, respectively. The heat transfer coefficient increased with the chevron angle. The heat transfer coefficient of R-22 was lamer than that of R-410A for all chevron angles.

  • PDF

The Effect of Viscosity on the Spray Characteristics of Pressure Swirl Atomizer (스월분무특성에 미치는 점성의 영향)

  • Yoon, S.J.;Cho, D.J.
    • Journal of ILASS-Korea
    • /
    • v.4 no.4
    • /
    • pp.24-29
    • /
    • 1999
  • In the pressure swirl atomizer, the liquid is injected through tangential passages into a swirl chamber, from which it emerges with both tangential and axial velocity components to form a thin conical sheet at the nozzle exit. This sheet rapidly attenuates, finally disintegrating into ligaments and then drops. The purpose of this study is to measure the spray characteristics according to variation of viscosity of the spray produced by the pressure swirl atomizer. The nozzle tested here were especially designed for this investigation. The discharge coefficient is determined by measuring the volume flow rate with a flow meter and the cone angle of the liquid sheets issuing from the nozzle is obtained from series of photographs of the sheet for various liquid viscosity and injection pressure. And mean drop size is measured by image processing method. It is found that the geometrical characteristics of the nozzle and the variation of viscosity were the influential parameters to determine the spray characteristics such as the cone angle, discharge coefficients and SMD.

  • PDF

Numerical Analysis on the Effect of Parameters that Affect the Flow Rate through the Tunnel with Jet Fan Ventilation System

  • Kim, Sa-Ryang;Hur, Nahmkeon;Kim, Young-Il;Kim, Ki-Jung
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.4
    • /
    • pp.178-187
    • /
    • 2003
  • In this study, ventilation flow rate and pressure rise through a tunnel are simulated numerically using computational fluid dynamics (CFD) for various conditions such as roughness height of the surface of tunnel, swirl angle and hub/tip ratio of jet fan, and entrance and exit effects. By using a modified wall function, friction factor can be predicted with respect to the Moody chart within 10% of error for the circular pipe flow and 15% for the present tunnel. For more accurate design, the effect of the swirl angle and hub/tip ratio of jet fan, which is not included in the theoretical equation of pressure rise by jet fan needs to be considered.

Effect of Inlet Diffuser-Angle for Flow Uniformity of Industrial Electrostatic Precipitators (산업용 전기집진기 내 유동 균일성에 대한 입구 디퓨저 확장각의 영향)

  • Kwon Hyun-Goo;Park Suk-Hwan;Cho Hyung-Hee;Park Ki-Seo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.4
    • /
    • pp.328-334
    • /
    • 2006
  • Industrial electrostatic precipitators require a highly uniform velocity distribution in the collecting chamber. Increasing divergence angle of a diffuser makes a non-uniformity flow distribution characteristics on the diffuser exit. This paper provides CFD results of optimum positions and opening rates of perforated plates which were installed in the electrostatic precipitator. The considered divergence angels were 60 degree and 90 degree. In 90 degree diffuser, a blanking method was used.

Flow Investigations in the Crossover System of a Centrifugal Compressor Stage

  • Reddy, K. Srinivasa;Murty, G.V. Ramana;Dasgupta, A.;Sharma, K.V.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.1
    • /
    • pp.11-19
    • /
    • 2010
  • The performance of the crossover system of a centrifugal compressor stage consisting of static components of $180^{\circ}$ U-bend, return channel vanes and exit ducting with a $90^{\circ}$ bend is investigated. This study is confined to the assessment of performance of the crossover system by varying the shape of the return channel vanes. For this purpose two different types of Return Channel Vanes (RCV1 and RCV2) were experimentally investigated. The performance of the crossover system is discussed in terms of total pressure loss coefficient, static pressure recovery coefficient and vane surface pressure distribution. The experimentation was carried out on a test setup in which static swirl vanes were used to simulate the flow at the exit of an actual centrifugal compressor impeller with a design flow coefficient of 0.053. The swirl vanes are connected to a mechanism with which the flow angle at the inlet of U-bend could be altered. The measurements were taken at five different operating conditions varying from 70% to 120% of design flow rate. On an overall assessment RCV1 is found to give better performance in comparison to RCV2 for different U-bend inlet flow angles. The performance of RCV2 was verified using numerical studies with the help of a CFD Code. Three dimensional sector models were used for simulating the flow through the crossover system. The turbulence was predicted with standard k-$\varepsilon$, 2-equation model. The iso-Mach contour plots on different planes and development of secondary flows were visualized through this study.