• Title/Summary/Keyword: existing freeway

Search Result 50, Processing Time 0.03 seconds

Development of Free Flow Speed Estimation Model by Artificial Neural Networks for Freeway Basic Sections (인공신경망을 이용한 고속도로 기본구간 자유속도 추정모형개발)

  • Kang, Jin-Gu;Chang, Myung-Soon;Kim, Jin-Tae;Kim, Eung-Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.3 s.74
    • /
    • pp.109-125
    • /
    • 2004
  • In recent decades, microscopic simulation models have become powerful tools to analyze traffic flow on highways and to assist the investigation of level of service. The existing microscopic simulation models simulate an individual vehicle's speed based on a constant free-flow speed dominantly specified by users and driver's behavior models reflecting vehicle interactions, such as car following and lane changing. They set a single free-flow speed for a single vehicle on a given link and neglect to consider the effects of highway design elements to it in their internal simulation. Due to this, the existing models are limitted to provide with identical simulation results on both curved and tangent sections of highways. This paper presents a model developed to estimate the change of free-flow speeds based on highway design elements. Nine neural network models were trained based on the field data collected from seven different freeway curve sections and three different locations at each section to capture the percent changes of free-flow speeds: 100 m upstream of the point of curve (PC) and the middle of the curve. The model employing seven highway design elements as its input variables was selected as the best : radius of curve, length of curve, superelevation, the number of lanes, grade variations, and the approaching free-flow speed on 100 m upstream of PC. Tests showed that the free-flow speeds estimated by the proposed model were statistically identical to the ones from the field at 95% confidence level at each three different locations described above. The root mean square errors at the starting and the middle of curve section were 6.68 and 10.06, and the R-squares at these points were 0.77 and 0.65, respectively. It was concluded from the study that the proposed model would be one of the potential tools introducing the effects of highway design elements to free-flow speeds in simulation.

Comprehensive Evaluation of Freeway Surface Conditions based on User's Satisfaction (이용자 만족도를 고려한 고속도로 노면상태 종합평가에 관한 연구)

  • Son, Young-Tae;Lee, Jin-Kak;Lee, Shin-Ra;Jung, Chul-Gie
    • International Journal of Highway Engineering
    • /
    • v.12 no.3
    • /
    • pp.37-47
    • /
    • 2010
  • This research is aimed at comprehensively evaluating the condition of a road surface of a highway in satisfaction of its users. This research conducted an overall evaluation of a road surface condition by adding qualitative data, or a driver's satisfaction to the existing quantitative elements, whereas the existing research put its focus on a correlation analysis with quantitative factors and qualitative factors through a statistical method. As for an evaluation method, this research conducted an overall evaluation by using Grey System Theory which makes possible an integrated evaluation. The analyzed results make it possible to diagnose the current conditions of each section of object roads and to predict the potentially changeable conditions for the time to come. In addition, these analyzed results could hopefully be applied to the maintenance of freeways through diverse methods. It is hoped that the evaluation of a road surface condition of a highway in satisfaction of its user could be helpful to keeping up the satisfaction of a driver and passenger on the highway by more than a certain level. In addition, the analyzed data on the influence of data value observed by comprehensively evaluating a variety of elements could be used as a secondary means of the decision-making process in relation to road maintenance. On top of that, it could be used as a means of improving road maintenance system and offering the improved driving environment of the highway.

Development of a Freeway Travel Time Estimating and Forecasting Model using Traffic Volume (차량검지기 교통량 데이터를 이용한 고속도로 통행시간 추정 및 예측모형 개발에 관한 연구)

  • 오세창;김명하;백용현
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.5
    • /
    • pp.83-95
    • /
    • 2003
  • This study aims to develop travel time estimation and prediction models on the freeway using measurements from vehicle detectors. In this study, we established a travel time estimation model using traffic volume which is a principle factor of traffic flow changes by reviewing existing travel time estimation techniques. As a result of goodness of fit test. in the normal traffic condition over 70km/h, RMSEP(Root Mean Square Error Proportion) from travel speed is lower than the proposed model, but the proposed model produce more reliable travel times than the other one in the congestion. Therefore in cases of congestion the model uses the method of calculating the delay time from excess link volumes from the in- and outflow and the vehicle speeds from detectors in the traffic situation at a speed of over 70km/h. We also conducted short term prediction of Kalman Filtering to forecast traffic condition and more accurate travel times using statistical model The results of evaluation showed that the lag time occurred between predicted travel time and estimated travel time but the RMSEP values of predicted travel time to observations are as 1ow as that of estimation.

The Development of Freeway Travel-Time Estimation and Prediction Models Using Neural Networks (신경망을 이용한 고속도로 여행시간 추정 및 예측모형 개발)

  • 김남선;이승환;오영태
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.1
    • /
    • pp.47-59
    • /
    • 2000
  • The purpose of this study is to develop travel-time estimation model using neural networks and prediction model using neural networks and kalman-filtering technique. The data used in this study are travel speed collected from inductive loop vehicle detection systems(VDS) and travel time collected from the toll collection system (TCS) between Seoul and Osan toll Plaza on the Seoul-Pusan Expressway. Two models, one for travel-time estimation and the other for travel-time Prediction were developed. Application cases of each model were divided into two cases, so-called, a single-region and a multiple-region. because of the different characteristics of travel behavior shown on each region. For the evaluation of the travel time estimation and Prediction models, two Parameters. i.e. mode and mean were compared using five-minute interval data sets. The test results show that mode was superior to mean in representing the relationship between speed and travel time. It is, however shown that mean value gives better results in case of insufficient data. It should be noted that the estimation and the Prediction of travel times based on the VDS data have been improved by using neural networks, because the waiting time at exit toll gates can be included for the estimation of travel time based on the VDS data by considering differences between VDS and TCS travel time Patterns in the models. In conclusion, the results show that the developed models decrease estimation and prediction errors. As a result of comparing the developed model with the existing model using the observed data, the equality coefficients of the developed model was average 88% and the existing model was average 68%. Thus, the developed model was improved minimum 17% and maximum 23% rather then existing model .

  • PDF

A Study on the Prediction of Traffic Volume on Highway by the Reference Day of Archived Data (이력자료 참조일수에 따른 고속도로 교통량 예측에 관한 연구)

  • Lee, So-Yeon;Jung, So-Yeon
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.2
    • /
    • pp.230-237
    • /
    • 2018
  • Purpose: In Korea, traffic information is collected in real time as part of Intelligent Transportation System to enhance efficiency of road operation. However, traffic information based on real-time data is different from the traffic situation the driver will experience. Method: In this study, forecasts were made for future highway traffic by day and time period by adjusting the Archived data reference days to 3, 5 and 10 days based on existing traffic Archived data. Results: Fewer days of reference in the past showed smaller errors. The prediction of Monday based on five past histories showed greater errors than the 10 past histories, as the traffic flow on the sixth Monday of 2016 was somewhat different from the usual holiday. Conclution: This study shows that less of the reference days of the past history when estimating traffic volume, the more accurate the data of the traffic history of the event can be used on special days.

Selecting Technique of Accident Sections using K-mean Method (K-평균법을 이용한 고속도로 사고분석구간 분할기법 개발)

  • Lee, Ki-Young;Chang, Myung-Soon
    • International Journal of Highway Engineering
    • /
    • v.7 no.4 s.26
    • /
    • pp.211-219
    • /
    • 2005
  • A selection of the analysis section for traffic accidents is used to analyze definitely the cause of accidents sorting similar accidents by a group and to raise the effect of improvement projects deciding the priority of accidents. In the existing method, an uniformly dividing method based on road mileages has been used, which has no consideration for similarities among accidents. Consequently, in recent, a slider-length method considering accident types rather than road mileages is widely used. In this study, using K-mean method, a non-hierarchical grouping technique used in the Cluster Analysis ai a applicatory method for the slider length method, a method classifies accidents that occurred the most nearby mileages into one group is proposed. To verify the proposed method, a comparison between the f-mean method and the dividing method at regular intervals on the data of a total of 25.6km lengths along Kyung-bu freeway in Pusan direction was made so that the K-mean method was proved to an effective method considering the similarities and adjacencies of accidents.

  • PDF

Adjacent to the Highway Intersection, According to the Disaster, the Optimal Operating (고속도로 재난/재해에 따른 인접교차로 최적 운영방안)

  • Kang, Jin-Woong;Kwon, Young-Hyuk;Lee, Mun-Young;Choi, Jae-Young;Kum, Ki-Jung
    • International Journal of Highway Engineering
    • /
    • v.14 no.3
    • /
    • pp.87-96
    • /
    • 2012
  • This research overcomes limit of prevention of disasters connection manual that was stopping in existing administrative formality presentation, and allowed purpose in substantial prevention of disasters countermeasure presentation through powerful engineering access. Did operation plan manual Tuesday in contiguity crossing that can reduce confusion by vehicleses that detour by contiguity IC of disaster point to do unusualness ashes in freeway section for this and solve jam-up phenomenon that occur by processing way insufficiency for roundabout way vehicles when happen. Metropolitan areas to target type classification in the highway along the highway adjacent to the intersection at Main Line Blocking optimum operating point analysis and an analysis of countermeasures in case of disaster, the lower the road entering the highway depending on the type of operating at the intersection were different. Depending on the results of analysis, while each point of a disaster, according to the characteristics of geometric conditions, traffic conditions, identify and determine the operating room and the adjacent intersection of media, and building systems to promote the driver if the quick initial response from the impending disaster situations and the safety of drivers can be considered secure.

Development of a Novel Integrated Evaluation Index for Freeway Traffic Data (고속도로 교통자료 품질 통합평가지표 개발)

  • PARK, Hyunjin;YOON, Mijung;KIM, Hae;OH, Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.4
    • /
    • pp.417-429
    • /
    • 2015
  • Evaluation of traffic data quality is a backbone of better traffic information and management systems because it directly affects the reliability of traffic information. This study developed an integrated index for evaluating the quality of archived intelligent transportation systems (ITS) data. Two novel indices including spatio-temporal consistency and severity of missing data were devised and integrated with existing indices such as availability and completeness. An evaluation framework was proposed based on the developed integrated index. Both analytical hierarchical analysis (AHP) technique and entropy method were adopted to derive mixed weighting values to be used for the integrated index. It is expected that the proposed methodology would be effectively used in enhancing the quality of traffic data as a part of traffic information system.

Parameter Estimation & Validation of Volume-delay Function based on Traffic Survey Data (교통조사를 통한 도로통행비용함수 구축 및 검증)

  • Kim, Ju-Yeong;Chu, Sang-Ho;Gang, Min-Gu;Heo, Heon
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.1
    • /
    • pp.115-124
    • /
    • 2010
  • VDF(volume-delay function) is one of the most important factor to improve the reliability of traffic demand estimation because it is for estimation of link travel time based on the traffic volume variation. Because VDF of link except for freeway is applied as the parameter of BPR(bureau of public road) of U.S., it causes to deteriorate the accuracy of traffic demand estimation. The purpose of this paper is to establish new parameter of VDF based on the real-surveyed traffic data in order to improve the problem of the existing VDF. We suggest the reclassification of road hierarchy, the approach of traffic survey, the estimating method of VDF parameter, and the improvements of new VDF application. The new VDF allows us to estimate more realistic traffic situation in parts of demand, travel time and path between origin-destination.

ST Reliability and Connectivity of VANETs for Different Mobility Environments

  • Saajid, Hussain;DI, WU;Memon, Sheeba;Bux, Naadiya Khuda
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2338-2356
    • /
    • 2019
  • Vehicular ad-hoc network (VANET) is the name of technology, which uses 'mobile internet' to facilitate communication between vehicles. The aim is to ensure road safety and achieve secure communication. Therefore, the reliability of this type of networks is a serious concern. The reliability of VANET is dependent upon proper communication between vehicles within a given amount of time. Therefore a new formula is introduced, the terms of the new formula correspond 1 by 1 to a class special ST route (SRORT). The new formula terms are much lesser than the Inclusion-Exclusion principle. An algorithm for the Source-to-Terminal reliability was presented, the algorithm produced Source-to-Terminal reliability or computed a Source-to-Terminal reliability expression by calculating a class of special networks of the given network. Since the architecture of this class of networks which need to be computed was comparatively trivial, the performance of the new algorithm was superior to the Inclusion-Exclusion principle. Also, we introduce a mobility metric called universal speed factor (USF) which is the extension of the existing speed factor, that suppose same speed of all vehicles at every time. The USF describes an exact relation between the relative speed of consecutive vehicles and the headway distance. The connectivity of vehicles in different mobile situations is analyzed using USF i.e., slow mobility connectivity, static connectivity, and high mobility connectivity. It is observed that $p_c$ probability of connectivity is directly proportional to the mean speed ${\mu}_{\nu}$ till specified threshold ${\mu}_{\tau}$, and decreases after ${\mu}_{\tau}$. Finally, the congested network is connected strongly as compared to the sparse network as shown in the simulation results.