• Title/Summary/Keyword: excitation intensity

Search Result 366, Processing Time 0.022 seconds

Luminescence and Concentration Quenching Properties of BaZrO3:Eu3+ Red-Emitting Phosphors (BaZrO3:Eu3+ 적색 형광체의 발광과 농도 소광 특성)

  • Nguyen Thi Kim Ngan;Shinho Cho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.3
    • /
    • pp.274-279
    • /
    • 2024
  • Eu3+-doped BaZrO3 (BaZrO3:Eu3+) phosphor powders were prepared using a solid-state reaction by changing the molar concentration of Eu3+ within the range of 0.5 to 30 mol%. Irrespective of the molar concentration of Eu3+ ions, the crystal structures of all the phosphors were cubic. The excitation spectra of BaZrO3:Eu3+ phosphors consisted of an intense broad band centered at 277 nm in the range of 230~320 nm. The emission spectra were composed of a dominant orange band at 595 nm arising from the 5D07F1 magnetic dipole transition of Eu3+ and two weak emission bands centered at 574 and 615 nm, respectively. As the concentration of Eu3+ increased from 0.5 to 10 mol%, the intensities of all the emission bands gradually increased, approached maxima at 10 mol% of Eu3+ ions, and then showed a decreasing tendency with further increase in the Eu3+ ions due to the concentration quenching. The critical distance between neighboring Eu3+ ions for concentration quenching was calculated to be 11.21 Å, indicating that dipole-dipole interaction was the main mechanism of concentration quenching of BaZrO3:Eu3+ phosphors. The results suggest that the orange emission intensity can be modulated by doping the appropriate concentration of Eu3+ ions.

Characterization of Dissolved Organic Matter in Stream and Industrial Waste Waters of Lake Sihwa Watershed by Fluorescence 3D-EEMs Analysis (형광 3D-EEMs를 이용한 시화호유역 하천 및 공단폐수의 유기물 특성 분석)

  • Lee, Mi-Kyung;Choi, Kwang-Soon;Kim, Sea-Won;Kim, Dong-Sup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.9
    • /
    • pp.803-810
    • /
    • 2009
  • This study is conducted to examine spatial variations of Dissolved Organic Matter (DOM) in stream and waste waters of the different watershed areas (agricultural, residential, and industrial complex area) by using fluorescence 3D-EEMs (3 Dimensional Excitation Emission Matrix Spectroscopy). Furthermore, the research investigates the changes of DOM characterization by synchronous and 3D-EEMs during a rainfall event. The characterizations of DOM obtained by 3D-EEMs show two noticeable peaks at humic and protein-like regions. Humic-like substances (HLS) are found in rural and urban areas, and humic and protein-like substances (PLS) are shown in industrial area. According to the fluorescence peak $T_1:C_1$ ratios, it is observed that high amount of HLS was discharged from Banweol Industrial Complex (3TG). Additionally, linear relationships (Regression rate, $r^2$=0.65, $r^2$=0.66) have been shown between PLS (peak $T_1,\;B_1$) and biochemical oxygen demand (BOD), which indicates the impact of sewage. For the rainfall event (30 mm), no remarkable difference of DOM was found at rural area except increment of fluorescence intensity comparing dry period. In contrast, HLS at urban area is highly discharged within 30 minutes from the beginning of rainfall. Also, there are high influences of HLS and PLS within 20 minutes at industrial complex (4TG). Fluorescence 3D-EEMs has not only verifies a watershed of DOM origination but also monitors diffuse and point source impacts.

A Study on Photoluminance Properties of $(Y,Gd)BO_3:Eu^{3+}$ Phosphor Synthesized by Ultrasonic Spray Pyrolysis (초음파 분무법으로 제조한 $(Y,Gd)BO_3:Eu^{3+}$ 형광체의 발광특성에 관한 연구)

  • Kim, Dae-Su;Lee, Rhim-Youl
    • Korean Journal of Materials Research
    • /
    • v.10 no.3
    • /
    • pp.204-211
    • /
    • 2000
  • The $(Y,Gd)BO_3:Eu$ red phosphors for PDP application were synthesized by ultrasonic spray method and then their photoluminance properties were investigated under 147nm VUV irradiation. The precursor solution of acetates of Y, GD and Eu and boric acid diluted in water was sprayed using 1.7 MHz ultra-sonic sprayer into the reaction tube held at high temperature. The as-sprayed particles were amorphous phase having C-C and C-H bonds due to the insufficient thermal reaction during the pass along the tube. But the sprayed samples followed by heat treatment at $1100^{\circ}C$ had the same crystal structure and chemical composition as those samples followed by solid state reaction. It was found that the $(Y_{0.7}Gd_{0.3})_{0.95} BO_3:Eu_{0.05}^{3+}$ phosphor particles synthesized by spray at $500^{\circ}C$ and then heat treated at $900^{\circ}C$ had a spherical-like shape and fine particle size at $0.7{\mu\textrm{m}}$ having a narrow size distribution, while the phosphor particles made by solid state reaction was $3{\mu\textrm{m}}$ coarse and non-uniform size distribution. The emitting intensity under 147nm VUV excitation for $(Y_{0.7}Gd_{0.3})_{0.95}BO_3:Eu_{0.05}^{3+}$ phosphor prepared by spray method was found to be higher than those phosphor made by solid state reaction and the commercial $(Y,Gd)BO_3:Eu$ product.

  • PDF

Determination of Terazocin in Human Plasma by Liquid Chromatography and Bioequivalence Study of Teratonin® Tablets (액체크로마토그래프법에 의한 사람 혈장 중 테라조신의 정량 및 테라토닌® 정의 생물학적 동등성)

  • Cho, Eun-Sook;Kang, Sung-Ha;Chun, In-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.32 no.2
    • /
    • pp.119-125
    • /
    • 2002
  • A rapid, selective and reproducible high-performance liquid chromatographic method has been developed for the determination of terazocin in human plasma. Terazocin plus the internal standard, prazocin hydrochloride, were extracted from alkalified plasma with tert-butylmethyl ether, back-extracted into 0.05% phosphoric acid. Fifty ${\mu}l-portions$ of extract were injected onto a octadecylsilane column and eluted with a mixture of acetonitrile, water and triethylamine (30 : 70 : 0.1 v/v, adjusted to pH 5.0 with dilute phosphoric acid) at a flow rate of 1.0 ml/min. The fluorescence intensity of column eluents was monitored at excitation wavelength of 250 nm and emission wavelength of 370 nm. No interference peaks were observed. The practical limit of quantitation was 5 ng/ml for terazocin. The average intraday and interday coefficients of variation were 4.15 and 3.54%, respectively. Also intraday and interday precisions over the range $5{\sim}60\;ng/ml$ were $0.49{\sim}2.92\;and\;0.38{\sim}5.12%$, respectively. The bioequivalence of two terazosin tablets, the $Hytrine^{\circledR}$ (Il Yang Pharmaceutical Co., Ltd.) and the $Teratonin^{\circledR}$ (Sam-A Pharmaceutical Co., Ltd.), was evaluated according to the guideline of Korea Food and Drug Administration (KFDA). Sixteen healthy male volunteers $(24.6{\pm}2.0\;years\;old)$ were divided into two groups and a randomized $2{\times}2$ cross-over study was employed. After one tablet containing 2 mg of terazosin was orally administered, blood was taken at predetermined time intervals and the concentration of terazosin in plasma was determined with a HPLC method using spectrofluorometric detector. AUC was calculated by the linear trapezoidal method. $C_{max}\;and\;T_{max}$ were compiled from the plasma drug concentration-time data. Analysis of variance (ANOVA) was utilized for the statistical analysis of the parameters. The results showed that the differences in $AUC_t,\;C_{max}\;and\;T_{max}$ between the two preparations were 0.21 %, 5.53% and 8.82%, respectively. The powers $(1-{\beta})\;for\;AUC_t,\;C_{max}\;and\;T_{max}$ were >99%, 97.49%, and 33.26%, respectively. Minimum detectable differences $({\Delta},\;%)\;at\;{\alpha}=0.1\;and\;1-{\beta}=0.8$ and the 90% confidence intervals were all less than ${\pm}20%$ except for $T_{max}.\;AUC_t\;and\;C_{max}$ met the criteria of KDFA for bioequivalence, indicating that $Teratonin^{circledR}$ tablets are bioequivalent to $Hytrine^{circledR}$ tablets.

DIAGNOSTICS OF PLASMA INDUCED IN Nd:YAG LASER WELDING OF ALUMINUM ALLOY

  • Kim, Jong-Do;Lee, Myeong-Hoon;Kim, Young-Sik;Seiji Katayama;Akira Matsunawa
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.612-619
    • /
    • 2002
  • The dynamic behavior of Al-Mg alloys plasma was very unstable and this instability was closely related to the unstable motion of keyhole during laser irradiation. The keyhole fluctuated both in size and shape and its fluctuation period was about 440 ${\mu}{\textrm}{m}$. This instability has been estimated to be caused by the evaporation phenomena of metals with different boiling point and latent heats of vaporization. Therefore, the authors have conducted the spectroscopic diagnostics of plasma induced in the pulsed YAG laser welding of Al-Mg alloys in air and argon atmospheres. In the air environment, the identified spectra were atomic lines of Al, Mg, Cr, Mn, Cu, Fe and Zn, and singly ionized Mg line, as well as strong molecular spectrum of AlO, MgO and AIH. It was confirmed that the resonant lines of Al and Mg were strongly self-absorbed, in particular in the vicinity of pool surface. The self-absorption of atomic Mg line was more eminent in alloys containing higher Mg. These facts showed that the laser-induced plasma was relatively a low temperature and high density metallic vapor. The intensities of molecular spectra of AlO and MgO were different each other depending on the power density of laser beam. Under the low power density irradiation condition, the MgO band spectra were predominant in intensity, while the AlO spectra became much stronger in higher power density. In argon atmosphere the band spectra of MgO and AlO completely vanished, but AlH molecular spectra was detected clearly. The hydrogen source was presumably the hydrogen solved in the base Metal, absorbed water on the surface oxide layer or H$_2$ and $H_2O$ in the shielding gas. The temporal change in spectral line intensities was quite similar to the fluctuation of keyhole. The time average plasma temperature at 1 mm high above the surface of A5083 alloy was determined by the Boltzmann plot method of atomic Cr lines of different excitation energy. The obtained electron temperature was 3, 280$\pm$150 K which was about 500 K higher than the boiling point of pure aluminum. The electron number density was determined by measuring the relative intensities of the spectra1lines of atomic and singly ionized Magnesium, and the obtained value was 1.85 x 1019 1/㎥.

  • PDF

Upconversion luminescence from poly-crystalline Yb3+, Er3+ co-doped NaGd(MoO4)2 by simple solid state method (Er3+, Yb3+ 이온이 동시 도핑된 NaGd(MoO4)2의 업컨버젼 분석)

  • Kang, Suk Hyun;Kang, Hyo Sang;Lee, Hee Ae;Shim, Kwang Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.4
    • /
    • pp.159-163
    • /
    • 2016
  • Up-conversion (UC) luminescence properties of polycrystalline $Er^{3+}/Yb^{3+}$ doped $NaGd(MoO_4)_2$ phosphors synthesized by a simple solid-state reaction method were investigated in detail. Used to 980 nm excitation (InfraRed area), $Er^{3+}/Yb^{3+}$ co-doped $NaGd(MoO_4)_2$ exhibited very weak red emissions near 650 and 670 nm, and very strong green UC emissions at 540 and 550 nm corresponding to the infra 4f transitions of $Er^{3+}(^4F_{9/2},\;^2H_{11/2},\;^4S_{3/2}){\rightarrow}Er^{3+}(^4I_{15/2})$. The optimum doping concentration of $Er^{3+}$, $Yb^{3+}$ for highest emission intensity was determined by XRD and PL analysis. The $Er^{3+}/Yb^{3+}$ (10.0/10.0 mol%) co-doped $NaGd(MoO_4)_2$ phosphor sample exhibited very strong shiny green emission. A possible UC mechanism for $Er^{3+}/Yb^{3+}$ co-doped $NaGd(MoO_4)_2$ depending on the pump power dependence was discussed.

Development of a Direct Evaluation Method to Measure the Rancidity of Yeonhaeju Soybean (Bazaz) Powders during Storage via the Fluorescence Spectrum Test (Fluorescence spectrum test를 이용한 연해주 대두(Bazaz) 분말의 저장 중 산패도 측정법 개발)

  • Uhm, Joo-Tae;Yoon, Won-Byong
    • Food Science and Preservation
    • /
    • v.19 no.5
    • /
    • pp.639-644
    • /
    • 2012
  • The rancidity of soybean (Glycine max L.) from Yeonhaeju, called "Bazaz", in powder forms was evaluated through a fluorescence spectrum test (FST). The results from the FST were validated by comparing the TBA and acid values. Soybean powders were stored in 25, and $90^{\circ}C$ for 20 days. The maximum excitation and maximum emission of fluorescent compounds generated from the soybean powder during storage were observed at the 360 nm and 430-440 nm wavelengths, respectively. The mean particle size of soybean powder was maintained at $40{\mu}m$ to avoid the dependence of the reaction area during measurement. According to the FST results, lipid oxidation did not actively progress during storage at $25^{\circ}C$. The fluorescence intensity (FI) from FST on the first day of storage was not significantly different from that on the last day of storage (day 20; p < 0.05), but the FI dramatically increased at $90^{\circ}C$. A smooth increase was observed in the initial stage; then, after 11 days of storage, the FI value increased by nearly 100% compared to that on the first day. The FI values were compared with TBA and acid values that were measured under the same storage conditions. All the values at $25^{\circ}C$ showed similar patterns during storage, but at $90^{\circ}C$, the FI and acid values showed similar patterns but the TBA decreased after reaching the maximum values on storage day 12. The results demonstrated that FST may be useful for measuring the rancidity of the powder form of soybean because it does not require extraction to measure the rancidity.

Effect of Different Fluxes in Preparation of Y2O3:Eu3+ Red Phosphor Used for Cold Cathode Fluorescence Lamp (냉 음극 형광 램프용 Y2O3:Eu3+ 적색 형광체에 대한 이종 Flux 혼합첨가의 영향)

  • Goo, Ja-In;Kim, Sang-Moon;Shin, Hag-Ki;Hong, Hong-Chae;Yoon, Seog-Young
    • Korean Journal of Materials Research
    • /
    • v.19 no.3
    • /
    • pp.163-168
    • /
    • 2009
  • $Eu^{3+}$-doped $Y_2O_3$ red phosphor was synthesized in a flux method using the chemicals $Y_2O_3,\;Eu_2O_3,\;H_3BO_3$ and $BaCl_2{\cdot}2H_2O$. The effect of a flux addition on the preparation of $Y_2O_3:Eu_{3+}$ red phosphor used as a cold cathode fluorescence lamp was investigated. $H_3BO_3$ and $BaCl_2{\cdot}2H_2O$ fluxes were used due to their different melting points. The crystallinity, thermal properties, morphology, and emission characteristics were measured using XRD, TG-DTA, SEM, and a photo-excited spectrometer. Under UV excitation of 254 nm, $Eu_2O_3$ 3.7 mol% doped $Y_2O_3$ exhibited a strong narrow-band red emission, peaking at 612 nm. From this result, the phosphor synthesized by firing $Y_2O_3$ with 3.7 mol% of $Eu_2O_3$, 0.25 mol% of $H_3BO_3$ and 0.5 mol% of $BaCl_2{\cdot}2H_2O$ fluxes at $1400^{\circ}C$ for 2 hours had a larger particle size of $4{\mu}m$ on average compared to the phosphor of the $H_3BO_3$ flux alone. In addition, a phosphor synthesized by the two fluxes together had a rounder corner shape, which led to the maximum emission intensity.

Spectrofluorimetric Determination of Fe(Ⅲ) with 4,5-Dihydroxy-1,3-Benzenedisulfonic Acid (4,5-Dihydroxy-1,3-Benzenedisulfonic Acid를 이용한 Fe(Ⅲ)의 분광형광법 정량)

  • Kim, Hye Seon;Choi, Hee Seon
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.4
    • /
    • pp.423-429
    • /
    • 1999
  • A spectrofluorimetric method for the determination of Fe(III) in aqueous solution with 4,5-dihydroxy-1,3-benzenedisulfonic acid(Tiron) as a fluorimetric reporter was developed. Tiron, which is very soluble in water,is a good fluorimetric reagent. However, when Tiron was complexed with Fe(III), the fluorescent intensity was decreased proportionally with the concentration of Fe(III) by a quenching effect. The excitation and fluorescene wavelength of Tiron showing the quenching effect by Fe(III) at pH 4.5 were 312 nm and 341 nm, respectively. The highest sensitivities were shown at Tiron concentration of $1.0{\times}10^{-2}M$. To enhance the quenching effect, the Fe(III)-Tiron complex solution was heated to 80$^{\circ}C$ for 90 minutes. As for Fe(III), the most interfering ion was Cu(II). The interference effects could be mostly eliminated by pH adjustment or by adding EDTA. The concentration ranges showing the linear response to Fe(III) was from $5.0{\times}10^{-7}M\;to\;6.0{\times}10^{-5}M$ With this proposed method, the detection limits of Fe(III) was $2.8{\times}10^{-6}M$. Recovery of Fe(lII) in a synthetic sample was almost quantitative. Based on experimental results, it is proposed that the above technique can be applied to the practical determination of Fe(III).

  • PDF

Optical Properties of MgMoO4:Dy3+,Eu3+ Phosphors Prepared with Different Eu3+ Molar Ratios (Eu3+ 이온의 몰 비 변화에 따른 MgMoO4:Dy3+,Eu3+ 형광체의 광학 특성)

  • Kim, Jung Dae;Cho, Shinho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.3
    • /
    • pp.186-191
    • /
    • 2016
  • The effects of $Eu^{3+}$ doping on the structural, morphological, and optical properties of $MgMoO_4:Dy^{3+},Eu^{3+}$ phosphors prepared by solid-state reaction technique were investigated. XRD patterns exhibited that all the synthesized phosphors showed a monoclinic system with a dominant (220) diffraction peak, irrespective of the content of $Eu^{3+}$ ions. The surface morphology of $MgMoO_4:Dy^{3+},Eu^{3+}$ phosphors was studied using scanning electron microscopy and the grains showed a tendency to agglomerate as the content of $Eu^{3+}$ ions increased. The excitation spectra of the phosphor powders were composed of a strong charge transfer band centered at 294 nm in the range of 230~340 nm and two intense peaks at 354 and 389 nm, respectively, arising from the $^6H_{15/2}{\rightarrow}^6P_{7/2}$ and $^6H_{15/2}{\rightarrow}^4M_{21/2}$ transitions of $Dy^{3+}$ ions. The emission spectra of the $Mg_{0.85}MoO_4$:10 mol% $Dy^{3+}$ phosphors without incorporating $Eu^{3+}$ ions revealed a strong yellow band centered at 573 nm resulting from the $^4F_{9/2}{\rightarrow}^6H_{13/2}$ transition of $Dy^{3+}$. As the content of $Eu^{3+}$ was increased, the intensity of the yellow emission was gradually decreased, while that of red emission band located at 614 nm began to appear, approached a maximum value at 10 mol%, and then decreased at 15 mol% of $Eu^{3+}$. These results indicated that white light emission could be achieved by controlling the contents of the $Dy^{3+}$ and $Eu^{3+}$ ions incorporated into the $MgMoO_4$ host crystal.