• Title/Summary/Keyword: excavation method

Search Result 1,058, Processing Time 0.03 seconds

Development of Connection between CFT Column and Pier Foundation for Top-Down Construction (Top-Down 공사용 원형충전강관기둥과 피어기초의 개발)

  • Jeong, Mee-Ra;Rhim, Hong-Chul;Kim, Seung-Weon;Kim, Dong-Gun;Kang, Seung-Ryong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.29-32
    • /
    • 2009
  • Building foundations for Top-Down construction require a special setting, because the foundations have to be placed way before excavation for the substructure of main building, Usually, the foundation goes into the layer of rock and it is often called rock-pier foundation, Currently, a cage of steel reinforcing bars is inserted to the pre-excavated hole in the rock layer, hanging down from the wide flange steel column above. This paper presents a new method for connecting the prefounded column and the steel cage with a coupler for better connection between the two, The use of a circular Concrete Filled Tube (CFT) as a prefounded column makes it possible to have this type of connection. The details of the connection and application to a Top-Down construction site is also included in this paper.

  • PDF

A Numerical Study on the Response of Jointed Rock Mass Due to Thermal Loading of Radioactive Waste (방사성 폐기물의 열하중에 의한 절리암반의 거동에 관한 수치해석적 연구)

  • 문현구;주광수
    • Tunnel and Underground Space
    • /
    • v.4 no.2
    • /
    • pp.102-118
    • /
    • 1994
  • Thermomechanical analysis is conducted on the radioactive repository in deep rock mass considering the in-situ stress, excavation and thermal loading of a radioactive waste. Thermomechanical properties of a discontinuous rock mass are estimated by a theoretical method so called sequential analysis. Using the estimated properties as input for finite element analysis, the influence on temperature distribution and thermal stress is analyzed within the scope of 2-dimensional steady state and transient heat transfer and coupled thermal elastic plastic behaviour. Granitic rock mass is taken for this analysis. The analysis is done for two different rock mass conditions, i.e. continuous-homogeneous and highly jointed conditions, for the purpose of comparison. In the case of steady state, the extent of disturbed zone around the storage tunnel due to the heat production of the spent-fuel canister varies depending on the thermomechanical properties of the rock mass. In the case of transient analyses, the response of the jointed rock mass to the thermal loading after radioactive waste disposal varies significantly with time, resulting in dramatic changes in the both size and location of disturbed zone.

  • PDF

The efficacy of chemo-mechanical removal of dental caries

  • Lim, Soon-Bin;Choi, Kyoung-Kyu;Park, Sang-Jin
    • Proceedings of the KACD Conference
    • /
    • 2003.11a
    • /
    • pp.611-612
    • /
    • 2003
  • Mechanical removal in decayed teeth has been performed using drill and sharp hand instruments. These methods have some major disadvantages. Namely mechanical preparation often induces pain, local anesthesia and often leads to overextended cavities. Therefore, to avoid these difficulties, a possible alternative method has been introduced for chemo-mechanical excavation of dentin caries lesions on the market. The purpose of this study was to evaluate the efficacy of between traditional mechanical and chemo-mechanical methods(Carisolv).(omitted)

  • PDF

The Study On The Pre-displacement Before Face Of The Shallow Tunnel In The Weathered Soil (풍화토구간을 통과하는 천층터널의 막장선행변위에 대한 연구)

  • Kang, Suk-Ki;Yoon, Ju-Sang
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.947-954
    • /
    • 2008
  • Nowadays many urban subways are frequently constructed under the building and the river by the use of tunneling method. Especially, the majority of the tunnel are constructed even with shallow depth under the ground in the weathered soil. Since the tunnel are generally designed on the basis of the geographic soil investigation, the stability of the tunnel should be checked with the realistic data instrumented during construction. The displacement of the tunnel occurs in front of the end face during the excavation of the tunnel, which is called as pre-displacement. The total displacement can be figured from the exact pre-displacement, which is very difficult to measure without using any device installed in front of the tunnel end face. In this study, the pre-displacement measured from horizontal inclinometer was analyzed to know the co-relation with the total displacement and also, the trend and the characteristics of the tunnel deformation during construction was suggested through the regression analysis of the measured data.

  • PDF

The design of coffer dam utilized P.R.D. method (P.R.D. 공법을 활용한 가물막이 설계)

  • Park, Chal-Sook;Lee, Kyu-Tak;Yum, Kyung-Taek;Kim, Yoon-Ku;Kang, Bong-Gwon;Lee, Jae-Weon;Lim, Seok-San;Jeong, Ji-Yearl
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.869-887
    • /
    • 2008
  • Coffer dam for tunnel type spillway in inflow section of Dae-am dam was originally planned as 2 lines sheet piles with Water Zet method. But, the result of pilot test was caused of some problems that vibration during installation of pile could pollute water and water leakage could the lower part. So, sheet piles was not satisfactory for faculty of coffer dam. Structural instability of sheet pile system need to reinforcement. Characteristic of Dae-am dam was small reservoir capacity but wide drainage area, of which it was judgment that security of leakage and stability was difficult during excavation of inlet part. So, we consider that water curtain method utilized with in site pouring concrete pile method was designed at weir part of spillway. We were known about basement rock that geological boring was carried out in weir part. After taking a deep consideration, PRD method was accepted as a new method. Concrete pile by PRD was installed to below country rock. CJM method was carried out with PRD. After making concrete wall using Top-down method, earth anchors were installed for supporting it. According to the result of numerical analysis, as water level rises, wall is stable.

  • PDF

Applicability estimation for cable assembling method of shield tunnel using field test construction (현장 조립 시험시공을 통한 쉴드터널 강연선 체결 기술의 적용성 평가)

  • Kim, Dong-Min;Ma, Sang-Joon;Lee, Young-Sub
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.1
    • /
    • pp.11-23
    • /
    • 2015
  • In this study, the new segment assembling method using cable tensible force was developed to improve the problem of bolt assembling method of shield tunnel. In the field test construction, cable assembling method reduced the assembling time of segment in comparison with bolt assembling method because of guide role of segment shear-key. In the result of measuring the necessary time for segment assembling process, it took 420sec to assemble one segment in bolt method and 400sec to assemble one segment in cable method, but in case of using the cable automatic feeder, it could reduce the necessary time as 60sec in comparison with bolt assembling method. The cable automatic system modeling using BIM, that connected shield TBM also will be utilized in the area of design TBM, excavation plan, method process understanding, construction management and so on.

A Study on the Structural Stability of Prefabricated Strut for Ground Excavation Construction (지반굴착용 조립식 버팀보의 구조 안정성에 관한 연구)

  • Lee, Ki-Sun;Kim, Doo-Hwan;Song, Kwan-Kwon;Kim, Seong-Pil;Kim, Jeong-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.75-83
    • /
    • 2018
  • In study, Structural stability was considered when applying the high strength strut method with improved general strut method. considered whether there is sufficient stiffness to so as not buckling to the maximum hypothetical earth pressure. also structure stability of the strut component was reviewed. The high strength strut method is a technique used in place of the general strut method. high strength prefabricated Strut method is a technique that has bolt holes drilled in the upper flange at regular intervals. As a result of the buckling analysis, it was considered that the safety factor increased by about 5 %. also Since the stress generated is below the allowable stress, it is judged that structural stability of the strut is ensured. In particular, the safety factor of axial compressive stress increases about 16 % with use of high strength steel when applying the high strength prefabricated strut method. the high strength strut method is construction method may shorten the construction period and there is no expense to purchase additional materials.

Numerical Approach to Evaluate the Behavior of Concrete Panel Considering Construction Method (수치해석을 이용한 시공방법에 따른 판넬식 옹벽의 거동 분석에 관한 연구)

  • Junhee, Kang;Hoki, Ban
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.12
    • /
    • pp.17-23
    • /
    • 2022
  • This paper analyze the precast panel retaining wall's safety factor changes based on the numerical analysis using PLAXIS 2D software. Numerical analysis conditions include construction method, nail and panel fixing method, backfill material compaction conditions, rainfall conditions. The classification according to the construction method of the precast panel retaining wall includes the top-down and bottom-up methods. The difference between the top-down and bottom-up methods is the presence or absence backfill material and the ground excavation method. The top-down method involves vertically excavating the ground and attaching the panel using mortar, but in the bottom-up method, the ground is vertically excavated and harden the backfill material. As a result of numerical analysis, the top-down method secured a higher safety factor in all cases except the rainfall conditions.

Analgesis of Clearly Reinforced Soil Wall Behavior by Model Test (모형시험에 의한 점성토 보강토벽의 거동분석)

  • 이용안;이재열;김유성
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.11c
    • /
    • pp.85-94
    • /
    • 1999
  • Reinforced Soil Wall has several merits comparing with conventional retaining wall. The conventional method has the limit of wall height, ununiform settlement of the foundation ground, quality assurance of the embankment body, shortening of construction period, economical construction and so on. Basis of previous mentioned things reinforced soil wall is the substitutional method of conventional retaining wall and its necessity is continuously increasing. The embanking material used in reinforced soil wall is generally limited such as a good quality sandy soil, and in many case constructors have to transfer such a good embanking material from far away to construction site. As a result, they would pressed by time and economy. If poor soils could be used embanking material, for example, clayey soil produced in-situ by cutting and excavation, the economical merit of reinforced soil wall would be increased more and more. Likewise, a lot of study about laboratory experimental behavior of reinforced soil wall using a good quality soil is being performed, but is rare study about clayey soil containing much volume of fine particle relatively in korea. In this study, the authors investigated behavior of the geosynthetic reinforced and unreinforced soil walls using clayey soil as embanking material in view of horizontal movement of walls, bearing capacity and reinforcement stress.

  • PDF

Deformation Analysis of Excavated Behind Ground by The Artificial Displacement Method (II) - Numerical Analysis and Application - (강제변위법을 이용한 굴착배면지반의 변형해석(II) - 수치해석 및 적용성 -)

  • Yun, Jung-Mann
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.3
    • /
    • pp.31-40
    • /
    • 2008
  • The deformation behavior of the excavated behind ground due to the displacement shape of retention walls is predicted by numerical analysis, which can be performed using the artificial displacement method with elasto-plastic constitutive model. The displacement shape of the behind ground around the retention wall is similar to the displacement shape of the retention wall. However, far from the retention wall, it changes to the displacement shape of cantilever. The deformation (the settlement, the lateral movement) of the excavated behind ground can be decreased by restraining the upper displacement of the retention wall. The displacement shape of the retention wall due to excavation affects on the plastic failure zone and decreasing zone of stability of the excavated behind ground.

  • PDF