• 제목/요약/키워드: exact stiffness matrix

검색결과 86건 처리시간 0.026초

An innovative approach for analyzing free vibration in functionally graded carbon nanotube sandwich plates

  • Shahabeddin Hatami;Mohammad J. Zarei;Seyyed H. Asghari Pari
    • Advances in nano research
    • /
    • 제17권1호
    • /
    • pp.19-32
    • /
    • 2024
  • Functionally graded-carbon nanotube (FG-CNT) is expected to be a new generation of materials with a wide range of potential applications in technological fields such as aerospace, defense, energy, and structural industries. In this paper, an exact finite strip method for functionally graded-carbon nanotube sandwich plates is developed using first-order shear deformation theory to get the exact natural frequencies of the plates. The face sheets of the plates are made of FG-CNT with continuous and smooth grading based on the power law index. The equations of motion have been generated based on the Hamilton principle. By extracting the exact stiffness matrix for any strip of the sandwich plate as a non-algebraic function of natural frequencies, it is possible to calculate the exact free vibration frequencies. The accuracy and efficiency of the current method is established by comparing its findings to the results of the literature works. Examples are presented to prove the efficiency of the generated method to deal with various problems, such as the influence of the length-to-height ratio, the power law index, and a core-to-face sheet thickness of the single and multi-span sandwich plates with various boundary conditions on the natural frequencies. The exact results obtained from this analysis can check the validity and accuracy of other numerical methods.

고층건물의 효율적인 구조해석 (An Efficient Structural Analysis of Multistory Buildings)

  • 김경호;이동근
    • 대한토목학회논문집
    • /
    • 제7권2호
    • /
    • pp.141-153
    • /
    • 1987
  • 고층 건물의 정확한 거동을 구하기 위한 구조 해석은 컴퓨터 적용의 중요한 분야로 취급되어 왔다. 본 논문에서는 건축구조물에 대한 3차원적인 해석방법을 연구하였다. 이 해석 방법은 건물을 각각의 독립된 프레임의 조합체로 보고 해석하므로 매우 효율적이며, 건물의 3차원적인 거동에 관한 고려는 건물이나 하중이 대칭이 아닐 때는 특히 중요하다. 그리고 matrix condensation 기법을 이용함으로써 컴퓨터의 용량과 해석 시간이 상당히 절약되므로 매우 경제적이다. 본 논문의 건물 구조해석 컴퓨터 프로그램 PFS의 정확성과 효율성을 증명하기 위해 여러가지 예제들에 대해서 SAPIV 에 의한 해석 결과와 비교하였다. 그러므로, 본 논문에서 제안한 해석방법은 고층 건물의 구조 설계에서 매우 효율적이라 할 수 있다.

  • PDF

An efficient approach to structural static reanalysis with added support constraints

  • Liu, Haifeng;Wu, Baisheng;Li, Zhengguang
    • Structural Engineering and Mechanics
    • /
    • 제43권3호
    • /
    • pp.273-285
    • /
    • 2012
  • Structural reanalysis is frequently used to reduce the computational cost during the process of design or optimization. The supports can be regarded as the design variables in various types of structural optimization problems. The location, number, and type of supports may be varied in order to yield a more effective design. The paper is focused on structural static reanalysis problem with added supports where some node displacements along axes of the global coordinate system are specified. A new approach is proposed and exact solutions can be provided by the approach. Thus, it belongs to the direct reanalysis methods. The information from the initial analysis has been fully exploited. Numerical examples show that the exact results can be achieved and the computational time can be significantly reduced by the proposed method.

Application of the exact spectral element method in the analysis of the smart functionally graded plate

  • Farhad Abad;Jafar Rouzegar;Saeid Lotfian
    • Steel and Composite Structures
    • /
    • 제47권2호
    • /
    • pp.297-313
    • /
    • 2023
  • This study aims to extend the application of the spectral element method (SEM) to wave propagation and free vibration analysis of functionally graded (FG) plates integrated with thin piezoelectric layers, plates with tapered thickness and structure on elastic foundations. Also, the dynamic response of the smart FG plate under impact and moving loads is presented. In this paper, the dynamic stiffness matrix of the smart rectangular FG plate is determined by using the exact dynamic shape functions based on Mindlin plate assumptions. The low computational time and results' independence with the number of elements are two significant features of the SEM. Also, to prove the accuracy and efficiency of the SEM, results are compared with Abaqus simulations and those reported in references. Furthermore, the effects of boundary conditions, power-law index, piezoelectric layers thickness, and type of loading on the results are studied.

Static and dynamic analysis of circular beams using explicit stiffness matrix

  • Rezaiee-Pajand, Mohammad;Rajabzadeh-Safaei, Niloofar
    • Structural Engineering and Mechanics
    • /
    • 제60권1호
    • /
    • pp.111-130
    • /
    • 2016
  • Two new elements with six degrees of freedom are proposed by applying the equilibrium conditions and strain-displacement equations. The first element is formulated for the infinite ratio of beam radius to thickness. In the second one, theory of the thick beam is used. Advantage of these elements is that by utilizing only one element, the exact solution will be obtained. Due to incorporating equilibrium conditions in the presented formulations, both proposed elements gave the precise internal forces. By solving some numerical tests, the high performance of the recommended formulations and also, interaction effects of the bending and axial forces will be demonstrated. While the second element has less error than the first one in thick regimes, the first element can be used for all regimes due to simplicity and good convergence. Based on static responses, it can be deduced that the first element is efficient for all the range of structural characteristics. The free vibration analysis will be performed using the first element. The results of static and dynamic tests show no deficiency, such as, shear and membrane locking and excessive stiff structural behavior.

유한요소법을 이용한 현가장치용 겹판스프림의 시뮬레이션 (Simulation of Leaf Spring for Suspension using FEM)

  • 안오순;이경백;김영재
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.620-623
    • /
    • 2000
  • The leaf spring is generally used effectively in load supporting because it has tension-diffused function in comparison with other springs. Nowadays the leaf spring is used widely in the suspensions of automobile and trains. The stiffness and the damping characteristics of the leaf spring being essential for the performance of vehicles, the exact evaluation is required. Various approximate formula are normally used for the leaf spring design. however, accuracy and trust are decreased because the contact and frictional characteristics between leaf plates are generally neglected. In this paper, nonlinear stiffness matrix of the leaf spring is solved by contact-element applying FEM for considering the contact and frictional characteristics between leaf plates. The results of proposed FE model are compared with test data.

  • PDF

내부 비정상 유동을 갖는 파이프계의 스펙트럼요소해석 (Spectral Element Analysis of the Pipeline Conveying Internal Unsteady Fluid)

  • 박종환;이우식
    • 대한기계학회논문집A
    • /
    • 제29권12권
    • /
    • pp.1574-1585
    • /
    • 2005
  • In this paper, a spectral element model is developed for the uniform straight pipelines conveying internal unsteady fluid. Four coupled pipe-dynamics equations are derived first by using the Hamilton's principle and the principles of fluid mechanics. The transverse displacement, the axial displacement, the fluid pressure and the fluid velocity are all considered as the dependent variables. The coupled pipe-dynamics equations are then linearized about the steady state values of the fluid pressure and velocity. As the final step, the spectral element model represented by the exact dynamic stiffness matrix, which is often called spectral element matrix, is formulated by using the frequency-domain solutions of the linearized pipe-dynamics equations. The FFT-based spectral dynamic analyses are conducted to evaluate the accuracy of the present spectral element model and also to investigate the structural dynamic characteristics and the internal fluid transients of an example pipeline system.

축 방향으로 이동하는 열 탄성 보의 스펙트럴요소해석 (Spectral Element Analysis of an Axially Moving Thermoelastic Beam)

  • 김도연;권경수;이우식
    • 한국철도학회논문집
    • /
    • 제7권3호
    • /
    • pp.239-244
    • /
    • 2004
  • The use of frequency-dependent spectral element matrix (or exact dynamic stiffness matrix) in structural dynamics may provide very accurate solutions, together with drastically reducing the number of degrees of freedom to improve the computation efficiency and cost problems. Thus, this paper develops a spectral element model for the coupled thermoelastic beam which axially moves with constant speed under a uniform tension. The accuracy of the spectral element model is then evaluated by comparing the natural frequencies obtained by the present element model with those obtained by the conventional finite element model.

회전체 베어링계의 불균형 응답을 위한 효율적인 계산 방법 (An efficient method for computation of unbalance responses of rotor-bearing systems)

  • 홍성욱;박종혁
    • 한국정밀공학회지
    • /
    • 제12권9호
    • /
    • pp.137-147
    • /
    • 1995
  • The unbalance response analysis is one of the essential area in the forced vibration analysis of rotor-bearing systems. Local bearing parameters in rotor-bearing systems are the major sources which give rise to a difficulty in unbalance response computation due to the complicated dynamic properties such as rotational speed dependency and anisotropy. In the present paper, an efficient method for unbalance responses is proposed so as to easily take into account bearing parameters in computation. An exact matrix condensation procedure is proposed which enables the present method to compute unbalance responses by dealing with condensed, small matrices. The proposed method causes no errors even though the computation procedure is based on the small matrices condensed from the full matrices. The present method is illustrated through a numerical example and compared with the conventional method.

  • PDF

Evaluation of vertical dynamic characteristics of cantilevered tall structures

  • Li, Q.S.;Xu, J.Y.;Li, G.Q.
    • Structural Engineering and Mechanics
    • /
    • 제11권4호
    • /
    • pp.357-372
    • /
    • 2001
  • In this paper, cantilevered tall structures are treated as cantilever bars with varying cross-section for the analysis of their free longitudinal (or axial) vibrations. Using appropriate transformations, exact analytical solutions to determine the longitudinal natural frequencies and mode shapes for a one step non-uniform bar are derived by selecting suitable expressions, such as exponential functions, for the distributions of mass and axial stiffness. The frequency equation of a multi-step bar is established using the approach that combines the transfer matrix procedure or the recurrence formula and the closed-form solutions of one step bars, leading to a single frequency equation for any number of steps. The Ritz method is also applied to determine the natural frequencies and mode shapes in the vertical direction for cantilevered tall structures with variably distributed stiffness and mass. The formulae proposed in this paper are simple and convenient for engineering applications. Numerical example shows that the fundamental longitudinal natural frequency and mode shape of a 27-storey building determined by the proposed methods are in good agreement with the corresponding measured data. It is also shown that the selected expressions are suitable for describing the distributions of axial stiffness and mass of typical tall buildings.