In this paper, the Bayesian recurrent neural network (BRNN) is proposed to predict time series data. Among the various traditional prediction methodologies, a neural network method is considered to be more effective in case of non-linear and non-stationary time series data. A neural network predictor requests proper learning strategy to adjust the network weights, and one need to prepare for non-linear and non-stationary evolution of network weights. The Bayesian neural network in this paper estimates not the single set of weights but the probability distributions of weights. In other words, we sets the weight vector as a state vector of state space method, and estimates its probability distributions in accordance with the Bayesian inference. This approach makes it possible to obtain more exact estimation of the weights. Moreover, in the aspect of network architecture, it is known that the recurrent feedback structure is superior to the feedforward structure for the problem of time series prediction. Therefore, the recurrent network with Bayesian inference, what we call BRNN, is expected to show higher performance than the normal neural network. To verify the performance of the proposed method, the time series data are numerically generated and a neural network predictor is applied on it. As a result, BRNN is proved to show better prediction result than common feedforward Bayesian neural network.
Purpose: The purpose of this study was to evaluate the nutritional status of low-income urban elders by diversified ways, and to analyze the risk factors for malnutrition. Methods: The participants in this study were 183 low-income elders registered at a visiting healthcare facility in a public health center. Data were collected using anthropometric measurements, and a questionnaire survey. For data analysis, descriptive statistics, ${\chi}^2$-test, t-test, Fisher's exact test, multiple logistic regression analysis were performed using SPSS 20.0. Results: Regarding the nutritional status of low-income elders as measured by the Mini Nutritional Assessment (MNA), 10.4% of the elders were classified as malnourished; 57.4% as at high risk for malnutrition; and 32.2% as having normal nutrition levels. The main factors affecting malnutrition for low-income elders were loss of appetite (OR=3.34, 95% CI: 1.16~9.56) and difficulties in meal preparation (OR=2.35, 95% CI: 1.13~4.88). Conclusion: In order to effectively improve nutrition in low-income urban elders, it is necessary to develop individual intervention strategies to manage factors that increase the risk of malnutrition and to use systematic approach strategies in local communities in terms of a nutrition support system.
Journal of Korean Institute of Industrial Engineers
/
v.20
no.3
/
pp.151-166
/
1994
The manufacturing environment on which this research is focused is an FMS in which AGVs are used for material handling and each part type has one or more process plans. The research aims at developing a methodology whereby, given a part and volume mix for production during any production session, the best set of process plans including one plan per part type is selected and the best unidirectional AGV guidepath can be dynamically reconfigured in response to changes in parts and lot sizes combination. For the integrated PPS/FGD problem in which two functions of process plan selection (PPS) and flexible AGV guidepath design (FGD) are integrated, a zero-one integer programming model is developed. The integrated problem is decomposed into two subproblems, process plan selection given a directed AGV layout and AGV guidepath design with a fixed process plan per part type. A heuristic algorithm that alternately and iteratively solves these two subproblems is developed. The effectiveness of the heuristic algorithm is tested by solving various randomly generated sample problems and comparing the heuristic solutions with those obtained by an exact procedure. From the test results, the following conclusions are drawn: 1) For a reasonable size problem, the heuristic is very effective. 2) By integrating the two functions of PPS and FGD, a remarkable benefit in total production time for a given part and volume mix is gained.
Transactions of the Korean Society of Mechanical Engineers A
/
v.26
no.2
/
pp.406-414
/
2002
A new approach, referred to as a successive zooming genetic algorithm (SZGA), is Proposed for identifying a global solution for continuous optimization problems. In order to improve the local fine-tuning capability of GA, we introduced a new method whereby the search space is zoomed around the design point with the best fitness per 100 generation. Furthermore, the reliability of the optimized solution is determined based on the theory of probability. To demonstrate the superiority of the proposed algorithm, a simple genetic algorithm, micro genetic algorithm, and the proposed algorithm were tested as regards for the minimization of a multiminima function as well as simple functions. The results confirmed that the proposed SZGA significantly improved the ability of the algorithm to identify a precise global minimum. As an example of structural optimization, the SZGA was applied to the optimal location of support points for weight minimization in the radial gate of a dam structure. The proposed algorithm identified a more exact optimum value than the standard genetic algorithms.
As the importance of collaboration becomes critical in today's open and complex business environment network, the issues and solutions on compatibility and reusability between different kinds of applications are being increasingly important as well in systems analysis and design. And therefore, service-centered SOA is receiving attention in such business environment as a strategic approach that makes possible for prompt action according to the needs of users and business process. Various implementation methodologies have been proposed for SOA, however, in practical aspects most of them have some problems since they fail to propose specific policies in definition and identification of services for the exact user requirements and business situations. To solve or alleviate those problems, this paper suggests a new service identification model based on hierarchical ontology, where three different ontologies such as business ontology, context ontology and service ontology are proposed to define the relationship and design the link between user requirements, business process, applications and services. Through a suggested methodology in this paper, it would be possible to provide proactive services that meets a variety of business environments and demands of user. Also, since the information can be modified adaptively and dynamically by hierarchical ontology, this study is expected to play a positive role in increasing the flexibility of systems and business environments.
Transactions of the Korean Society for Noise and Vibration Engineering
/
v.22
no.8
/
pp.742-747
/
2012
A modified NDIF method using a sub-domain approach is introduced to extract highly accurate eigenvalues of two-dimensional, arbitrarily shaped acoustic cavities. The NDIF method, which was developed by the authors for the eigen-mode analysis of arbitrarily shaped acoustic cavities, has the feature that it yields highly accurate eigenvalues compared with other analytical methods or numerical methods(FEM and BEM). However, the NDIF method has the weak point that it can be applicable for only convex cavities. It was revealed that the solution of the NDIF method is very inaccurate or is not suitable for concave cavities. To overcome the weak point, the paper proposes the sub-domain method of dividing a concave domain into several convex domains. Finally, the validity of the proposed method is verified in two case studies, which indicate that eigenvalues obtained by the proposed method are more accurate compared to the exact method, the NDIF method, or FEM(ANSYS).
Lee, Jong Won;Kim, Sang Ryul;Kim, Bong Ki;Lee, Jun Shin
Transactions of the Korean Society for Noise and Vibration Engineering
/
v.23
no.4
/
pp.347-355
/
2013
A damage estimation method for monopile support structure of offshore wind turbine using modal properties and committee of neural networks is presented for effective structural health monitoring. An analytical model for a monopile support structure is established, and the natural frequencies, mode shapes, and mode shape slopes for the support structure are calculated considering soil condition and added mass. The input to the neural networks consists of the modal properties and the output is composed of the stiffness indices of the support structure. Multiple neural networks are constructed and each individual network is trained independently with different initial synaptic weights. Then, the estimated stiffness indices from different neural networks are averaged. Ten damage cases are estimated using the proposed method, and the identified damage locations and severities agree reasonably well with the exact values. The accuracy of the estimation can be improved by applying the committee of neural networks which is a statistical approach averaging the damage indices in the functional space.
Journal of the Korea Institute of Information and Communication Engineering
/
v.4
no.3
/
pp.585-594
/
2000
The exact path following of an autonomous mobile robot in a factory and an unreliable environment has many disadvantages in case of a classical control algorithm. In this paper, a neural network control approach based on an error back propagation algorithm is proposed for controlling a mobile robot to follow a line installed on the road. Since not only the three recognized informations from three sensors attached on a mobile robot but also the ten detailed informations in non recognition area are learned with input patterns, a mobile robot moves smoothly an installed line in spite of non perception space. The mobile robot has an effect of error minimization with a short time till a destination. To test an effectiveness of the proposed controller, the two motor velocity changes which is affected from a moving angle change of a mobile robot are simulated with computer.
Journal of Korea Society of Industrial Information Systems
/
v.6
no.3
/
pp.115-122
/
2001
A scene change detection is an important step for video indexing and retrieval. This paper proposes an algorithm by a phased algorithm for fast and accurate detection of abrupt scene changes in an MPEG compressed domain with minimal decoding requirements and computational effort. The proposed method compares two successive I-frames for locating a scene change occurring within the GOP and uses macroblock-coded type information contained in B-frames to detect the exact frame where the scene change occurred. The algorithm has the advantage of speed, simplicity and accuracy. In addition, it requires less amount of storage. The experiment results demonstrate that the proposed algorithm has better detection performance, such as precision and recall rate, than the existing method using all DC images.
Newspaper reader mobile applications using text-to-speech (TTS) function enable blind people to read newspaper contents. But, tables cannot be easily read by the reader program because most of the tables are stored as images in the contents. Even though we try to use OCR (Optical character reader) programs to recognize letters from the table images, it cannot be simply applied to the table reading function because the table structure is unknown to the readers. Therefore, identification of exact location of each table cell that contains the text of the table is required beforehand. In this paper, we propose an efficient image processing algorithm to recognize all the cells in tables by identifying columns and rows in table images. From the cell location data provided by the table column and row identification algorithm, we can generate table structure information and table reading scenarios. Our experimental results with table images found commonly in newspapers show that our cell identification approach has 100% accuracy for simple black and white table images and about 99.7% accuracy for colored and complicated tables.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.