• Title/Summary/Keyword: exact approach

Search Result 627, Processing Time 0.025 seconds

Free vibration analysis of moderately thick rectangular laminated composite plates with arbitrary boundary conditions

  • Naserian-Nik, A.M.;Tahani, M.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.2
    • /
    • pp.217-240
    • /
    • 2010
  • A semi-analytical method is presented for accurately prediction of the free vibration behavior of generally laminated composite plates with arbitrary boundary conditions. The method employs the technique of separation of spatial variables within Hamilton's principle to obtain the equations of motion, including two systems of coupled ordinary homogeneous differential equations. Subsequently, by applying the laminate constitutive relations into the resulting equations two sets of coupled ordinary differential equations with constant coefficients, in terms of displacements, are achieved. The obtained differential equations are solved for the natural frequencies and corresponding mode shapes, with the use of the exact state-space approach. The formulation is exploited in the framework of the first-order shear deformation theory to incorporate the effects of transverse shear deformation and rotary inertia. The efficiency and accuracy of the present method are demonstrated by obtaining solutions to a wide range of problems and comparing them with finite element analysis and previously published results.

Closed form ultimate strength of multi-rectangle reinforced concrete sections under axial load and biaxial bending

  • da Silva, V. Dias;Barros, M.H.F.M.;Julio, E.N.B.S.;Ferreira, C.C.
    • Computers and Concrete
    • /
    • v.6 no.6
    • /
    • pp.505-521
    • /
    • 2009
  • The analysis of prismatic members made of reinforced concrete under inclined bending, especially the computation of ultimate loads, is a pronounced non-linear problem which is frequently solved by discretizing the stress distribution in the cross-section using interpolation functions. In the approach described in the present contribution the exact analytical stress distribution is used instead. The obtained expressions are integrated by means of a symbolic manipulation package and automatically converted to optimized Fortran code. The direct problem-computation of ultimate internal forces given the position of the neutral axis-is first described. Subsequently, two kinds of inverse problem are treated: the computation of rupture envelops and the dimensioning of reinforcement, given design internal forces. An iterative Newton-Raphson procedure is used. Examples are presented.

Nonlinear dynamic analysis by Dynamic Relaxation method

  • Rezaiee-Pajand, M.;Alamatian, J.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.5
    • /
    • pp.549-570
    • /
    • 2008
  • Numerical integration is an efficient approach for nonlinear dynamic analysis. In this paper, general category of the implicit integration errors will be discussed. In order to decrease the errors, Dynamic Relaxation method with modified time step (MFT) will be used. This procedure leads to an alternative algorithm which is very general and can be utilized with any implicit integration scheme. For numerical verification of the proposed technique, some single and multi degrees of freedom nonlinear dynamic systems will be analyzed. Moreover, results are compared with both exact and other available solutions. Suitable accuracy, high efficiency, simplicity, vector operations and automatic procedures are the main merits of the new algorithm in solving nonlinear dynamic problems.

The buckling of piezoelectric plates on pasternak elastic foundation using higher-order shear deformation plate theories

  • Ellali, Mokhtar;Amara, Khaled;Bouazza, Mokhtar;Bourada, Fouad
    • Smart Structures and Systems
    • /
    • v.21 no.1
    • /
    • pp.113-122
    • /
    • 2018
  • In this article, an exact analytical solution for mechanical buckling analysis of magnetoelectroelastic plate resting on pasternak foundation is investigated based on the third-order shear deformation plate theory. The in-plane electric and magnetic fields can be ignored for plates. According to Maxwell equation and magnetoelectric boundary condition, the variation of electric and magnetic potentials along the thickness direction of the plate is determined. The von Karman model is exploited to capture the effect of nonlinearity. Navier's approach has been used to solve the governing equations for all edges simply supported boundary conditions. Numerical results reveal the effects of (i) lateral load, (ii) electric load, (iii) magnetic load and (iv) higher order shear deformation theory on the critical buckling load have been investigated. These results must be the analysis of intelligent structures constructed from magnetoelectroelastic materials.

A numerical method for dynamic characteristics of nonlocal porous metal-ceramic plates under periodic dynamic loads

  • Abdulrazzaq, Mohammed Abdulraoof;Kadhim, Zeyad D.;Faleh, Nadhim M.;Moustafa, Nader M.
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.1
    • /
    • pp.27-42
    • /
    • 2020
  • Dynamic stability of graded nonlocal nano-dimension plates on elastic substrate due to in-plane periodic loads has been researched via a novel 3- unknown plate theory based on exact position of neutral surface. Proposed theory confirms the shear deformation effects and contains lower field components in comparison to first order and refined 4- unknown plate theories. A modified power-law function has been utilized in order to express the porosity-dependent material coefficients. The equations of nanoplate have been represented in the context of Mathieu-Hill equations and Chebyshev-Ritz-Bolotin's approach has been performed to derive the stability boundaries. Detailed impacts of static/dynamic loading parameters, nonlocal constant, foundation parameters, material index and porosities on instability boundaries of graded nanoscale plates are researched.

Iron Loss Analysis Considering Excitation Conditions Under Alternating Magnetic Fields

  • Hong, Sun-Ki;Koh, Chang-Seop
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.3
    • /
    • pp.33-38
    • /
    • 2010
  • In this paper, the nature of iron loss in electrical steel during alternating field excitation is investigated more precisely. The exact definition of AC iron loss is cleared by accurately measuring the iron loss for conditions of both the sinusoidal magnetic field and sinusoidal magnetic flux density. The results of this approach to iron loss calculations in electrical steel are compared to experimentally-measured losses. In addition, an inverse hysteresis model considering eddy current loss was developed to analyze the iron loss when the input is the voltage source. With this model, the inrush current in the inductor or transformer as well as the iron loss can be calculated.

Speech enhancement using psychoacoustics model (사이코어쿠스틱스 모델을 이용한 음성 향상)

  • Kwon, Chul-Hyun;Shin, Dae-Kyu;Park, Sang-Hui
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.748-750
    • /
    • 1999
  • In this study, a speech enhancement is presented based on the utilization of well-known auditory mechanism, noise masking. The speech enhancement approach adopted here is to derive an modifier that achieves audible noise suppression. This modification selectively affects the perceptually significant spectral values, and is therefore less prone to introduction of unwanted distortions than methods that affect the complete STSA and produces more enhanced results at low SNR as well as at high SNR. The speech enhancement method adopted here needs exact estimation of the minimum specteal value per critical band because it uses only the minimum spectral value per critical band. For this, the method adopted here uses the modified spectral subtraction that is more flexible than power spectral subtraction. So, the result in experiment represented better SNR than before.

  • PDF

Motion Analysis of a Moving Object using one Camera and Tracking Method (단일 카메라와 Tracking 기법을 이용한 이동 물체의 모션 분석)

  • Shin, Myong-Jun;Son, Young-Ik;Kim, Kab-Il
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2821-2823
    • /
    • 2005
  • When we deal with the image data through camera lens, much works are necessary for removing image distortions and obtaining accurate informations from the raw data. However, the calibration process is very complicated and requires many trials and errors. In this paper, 3 new approach to image processing is presented by developing a H/W vision system with a tracking camera. Using motor control with encoders the proposed tracking method tells us exact displacements of a moving object. Therefore this method does not require any calibration process for pin cusion. Owing to the mobility one camera covers wide ranges and, by lowering its height, the camera also obtains high resolution of the image. We first introduce the structure of the motion analysis system. Then the construced vision system is investigated by some experiments.

  • PDF

A Basic Study on the Railway Safety Management Based on Risk Assessment Approach (위험도 평가기법을 적용한 철도시스템의 안전관리)

  • Kim Sang Am;Wang Jong Bae;Kwak Sang Log;Lee Dong Ha
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.223-228
    • /
    • 2003
  • Risk Management does not mean accepting a risk but having a good grasp of, eliminating and controling the exact causes of known hazards. Good safety management plan or system for the safety of any systems need to include the procedures about standing safety goals, related technical information, time schedule, audit programs, etc at least. In this paper the summeries on general risk assessment techniques and the examples of risk assessment system and railway risk management strategies used in UK, Australia and Canada are introduced, and applicable establishment procedures for domestic railway industries are proposed.

  • PDF

A modified estimating equation for a binary time varying covariate with an interval censored changing time

  • Kim, Yang-Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.4
    • /
    • pp.335-341
    • /
    • 2016
  • Interval censored failure time data often occurs in an observational study where a subject is followed periodically. Instead of observing an exact failure time, two inspection times that include it are made available. Several methods have been suggested to analyze interval censored failure time data (Sun, 2006). In this article, we are concerned with a binary time-varying covariate whose changing time is interval censored. A modified estimating equation is proposed by extending the approach suggested in the presence of a missing covariate. Based on simulation results, the proposed method shows a better performance than other simple imputation methods. ACTG 181 dataset were analyzed as a real example.