• Title/Summary/Keyword: evolutionary optimal design

Search Result 137, Processing Time 0.028 seconds

A New Multiplex-PCR for Urinary Tract Pathogen Detection Using Primer Design Based on an Evolutionary Computation Method

  • Garcia, Liliana Torcoroma;Cristancho, Laura Maritza;Vera, Erika Patricia;Begambre, Oscar
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.10
    • /
    • pp.1714-1727
    • /
    • 2015
  • This work describes a new strategy for optimal design of Multiplex-PCR primer sequences. The process is based on the Particle Swarm Optimization-Simplex algorithm (Mult-PSOS). Diverging from previous solutions centered on heuristic tools, the Mult-PSOS is selfconfigured because it does not require the definition of the algorithm's initial search parameters. The successful performance of this method was validated in vitro using Multiplex-PCR assays. For this validation, seven gene sequences of the most prevalent bacteria implicated in urinary tract infections were taken as DNA targets. The in vitro tests confirmed the good performance of the Mult-PSOS, with respect to infectious disease diagnosis, in the rapid and efficient selection of the optimal oligonucleotide sequences for Multiplex-PCRs. The predicted sequences allowed the adequate amplification of all amplicons in a single step (with the correct amount of DNA template and primers), reducing significantly the need for trial and error experiments. In addition, owing to its independence from the initial selection of the heuristic constants, the Mult-PSOS can be employed by non-expert users in computational techniques or in primer design problems.

The Optimization of Injection Molding System Using Axiomatic Approach (공리적 개념을 적용한 사출성형 시스템의 최적설계)

  • Kim, Jong-Hun;Lee, Jong-Soo;Cha, Sung-Woon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.1020-1027
    • /
    • 2003
  • A traditional mold design has been conducted by an experience-based trial and error, whereby the mold designer would decide the gate locations and processing conditions based on the caring characteristics and its functional requirements. The paper suggests an optimal gate location and processing conditions in the injection molding using a global search method referred to as micro genetic algorithm( ${\mu}$ GA). ${\mu}$ GA yields the optimal solution with a small size of population without respect to design variables for saving time that is needed to calculate the fitness of many individuals. Due to the reason, the paper uses a commercial analysis package of injection molding(CAPA) to analysis a state of flux. In addition to that, axiomatic approach .is applied in the beginning of design. It is a useful method to draw a well-organized and reasonable idea to handle a problem.

Topology Optimization of the Inner Reinforcement of a Vehicle's Hood using Reliability Analysis (신뢰성 해석을 이용한 차량 후드 보강재의 위상최적화)

  • Park, Jae-Yong;Im, Min-Kyu;Oh, Young-Kyu;Park, Jae-Yong;Han, Seog-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.5
    • /
    • pp.691-697
    • /
    • 2010
  • Reliability-based topology optimization (RBTO) is to get an optimal topology satisfying uncertainties of design variables. In this study, reliability-based topology optimization method is applied to the inner reinforcement of vehicle's hood based on BESO. A multi-objective topology optimization technique was implemented to obtain optimal topology of the inner reinforcement of the hood. considering the static stiffness of bending and torsion as well as natural frequency. Performance measure approach (PMA), which has probabilistic constraints that are formulated in terms of the reliability index, is adopted to evaluate the probabilistic constraints. To evaluate the obtained optimal topology by RBTO, it is compared with that of DTO of the inner reinforcement of the hood. It is found that the more suitable topology is obtained through RBTO than DTO even though the final volume of RBTO is a little bit larger than that of DTO. From the result, multiobjective optimization technique based on the BESO can be applied very effectively in topology optimization for vehicle's hood reinforcement considering the static stiffness of bending and torsion as well as natural frequency.

Optimal Rotor Structure Design of Interior Permanent Magnet Synchronous Machine based on Efficient Genetic Algorithm Using Kriging Model

  • Woo, Dong-Kyun;Kim, Il-Woo;Jung, Hyun-Kyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.530-537
    • /
    • 2012
  • In the recent past, genetic algorithm (GA) and evolutionary optimization scheme have become increasingly popular for the design of electromagnetic (EM) devices. However, the conventional GA suffers from computational drawback and parameter dependency when applied to a computationally expensive problem, such as practical EM optimization design. To overcome these issues, a hybrid optimization scheme using GA in conjunction with Kriging is proposed. The algorithm is validated by using two mathematical problems and by optimizing rotor structure of interior permanent magnet synchronous machine.

Fuzzy Controller of Three-Inertia Resonance System designed by Differential Evolution

  • Ikeda, Hidehiro;Hanamoto, Tsuyoshi
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.2
    • /
    • pp.184-189
    • /
    • 2014
  • In this paper, a new design method of vibration suppression controller for multi-inertia (especially, 3-ineritia) resonance systems is proposed. The controller consists of a digital fuzzy controller for speed loop and a digital PI controller for current minor loop. The three scaling factor of the fuzzy controller and two PI controller gains are determined by Differential Evolution (DE). The DE is one of optimization techniques and a kind of evolutionary computation technique. In this paper, we have applied the DE/rand/1/bin strategy to design the optimal controller parameters. Comparing with the conventional design algorithm, the proposed method is able to shorten the time of the controller design to a large extent and to obtain accurate results. Finally, we confirmed the effectiveness of the proposal method by the computer simulations.

Design of Optimal Digital IIR Filters using the Genetic Algorithm

  • Jang, Jung-Doo;Kang, Seong G.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.2
    • /
    • pp.115-121
    • /
    • 2002
  • This paper presents an evolutionary design of digital IIR filters using the genetic algorithm (GA) with modified genetic operators and real-valued encoding. Conventional digital IIR filter design methods involve algebraic transformations of the transfer function of an analog low-pass filter (LPF) that satisfies prescribed filter specifications. Other types of frequency-selective digital fillers as high-pass (HPF), band-pass (BPF), and band-stop (BSF) filters are obtained by appropriate transformations of a prototype low-pass filter. In the GA-based digital IIR filter design scheme, filter coefficients are represented as a set of real-valued genes in a chromosome. Each chromosome represents the structure and weights of an individual filter. GA directly finds the coefficients of the desired filter transfer function through genetic search fur given filter specifications of minimum filter order. Crossover and mutation operators are selected to ensure the stability of resulting IIR filters. Other types of filters can be found independently from the filter specifications, not from algebraic transformations.

The Design Methodology of Fuzzy Controller by Means of Evolutionary Computing and Fuzzy-Set based Neural Networks

  • Roh, Seok-Beom;Oh, Sung-Kwun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.438-441
    • /
    • 2004
  • In this study, we introduce a noble neurogenetic approach to the design of fuzzy controller. The design procedure dwells on the use of Computational Intelligence (CI), namely genetic algorithms and Fuzzy-Set based Neural Networks (FSNN). The crux of the design methodology is based on the selection and determination of optimal values of the scaling factors of the fuzzy controllers, which are essential to the entire optimization process. First, the tuning of the scaling factors of the fuzzy controller is carried out by using GAs, and then the development of a nonlinear mapping for the scaling factors is realized by using GA based FSNN. The developed approach is applied to a nonlinear system such as an inverted pendulum where we show the results of comprehensive numerical studies and carry out a detailed comparative analysis.

  • PDF

Comparison between uniform deformation method and Genetic Algorithm for optimizing mechanical properties of dampers

  • Mohammadi, Reza Karami;Mirjalaly, Maryam;Mirtaheri, Masoud;Nazeryan, Meissam
    • Earthquakes and Structures
    • /
    • v.14 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • Seismic retrofitting of existing buildings and design of earth-quake resistant buildings are important issues associated with earthquake-prone zones. Use of metallic-yielding dampers as an energy dissipation system is an acceptable method for controlling damages in structures and improving their seismic performance. In this study, the optimal distribution of dampers for reducing the seismic response of steel frames with multi-degrees freedom is presented utilizing the uniform distribution of deformations. This has been done in a way that, the final configuration of dampers in the frames lead to minimum weight while satisfying the performance criteria. It is shown that such a structure has an optimum seismic performance, in which the maximum structure capacity is used. Then the genetic algorithm which is an evolutionary optimization method is used for optimal arrangement of the steel dampers in the structure. In continuation for specifying the optimal accurate response, the local search algorithm based on the gradient concept has been selected. In this research the introduced optimization methods are used for optimal retrofitting in the moment-resisting frame with inelastic behavior and initial weakness in design. Ultimately the optimal configuration of dampers over the height of building specified and by comparing the results of the uniform deformation method with those of the genetic algorithm, the validity of the uniform deformation method in terms of accuracy, Time Speed Optimization and the simplicity of the theory have been proven.

A Study on Optimal Design for Linear Electromagnetic Generator of Electricity Sensor System using Vibration Energy Harvesting (진동에너지 하베스팅을 이용한 전력감지시스템용 리니어 전자기 발전기에 관한 최적설계)

  • Cho, Seong Jin;Kim, Jin Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.7-15
    • /
    • 2017
  • Recently, an electricity sensor system has been installed and operated to prevent failures and accidents by identifying whether a transformer is normal in advance of failure. This electricity sensor system is able to both measure and monitor the transformer's power and voltage remotely and send information to a manager when unusual operation is discovered. However, a battery is required to operate power detection devices, and battery systems need ongoing management such as regular replacement. In addition, at a maintenance cost, occasional human resources and worker safety problems arise. Accordingly, we apply a linear electromagnetic generator using vibration energy from a transformer for an electric sensor system's drive in this research and we conduct optimal design to maximize the linear electromagnetic generator's power. We consider design variables using the provided design method from Process Integration, Automation, and Optimization (PIAnO), which is common tool from process integration and design optimization (PIDO). In addition, we analyze the experiment point from the design of the experiments using "MAXWELL," which is a common electromagnet analysis program. We then create an approximate model and conduct accuracy verification. Finally, we determine the optimal model that generates the maximum power using the proven approximate kriging model and evolutionary optimization algorithm, which we then confirm via simulation.

Numerical Optimization of a Transonic Axial Compressor with Casing Grooves for Improvement of Operating Stability (케이싱 그루브가 장착된 천음속 축류압축기의 작동 안정성 향상을 위한 수치최적화)

  • Kim, Jin-Hyuk;Choi, Kwang-Jin;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.5
    • /
    • pp.31-38
    • /
    • 2011
  • Optimization using a hybrid multi-objective evolutionary algorithm coupled with response surface approximation has been performed to improve the performance of a transonic axial compressor with circumferential casing grooves. In order to optimize the operating stability and peak adiabatic efficiency of the compressor with circumferential casing grooves, tip clearance, angle distribution at blade tip and the depth of the circumferential casing grooves are selected as design variables. Three-dimensional Reynolds-averaged Navier-Stokes equations with the shear stress transport turbulence model are discretized by finite volume approximations. The trade-off between two objectives with the interaction of blade and casing treatment is determined and discussed with respect to the representative clusters in the Pareto-optimal solutions compared to the axial compressor without the casing treatment.