• Title/Summary/Keyword: evolution-stars

Search Result 296, Processing Time 0.025 seconds

LOW-RESOLUTION SPECTROSCOPIC STUDIES OF GLOBULAR CLUSTERS WITH MULTIPLE POPULATIONS

  • LIM, DONGWOOK;HAN, SANG-IL;ROH, DONG-GOO;LEE, YOUNG-WOOK
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.255-259
    • /
    • 2015
  • Recent narrow-band Ca photometry discovered two distinct red giant branch (RGB) populations in some massive globular clusters (GCs) including M22, NGC 1851, and NGC 288. In order to investigate the differences in light/heavy elements abundances between the two subpopulations, we have performed low-resolution spectroscopy for stars on the two RGBs in these GCs. We find a significant difference (more than $4{\sigma}$) in calcium abundance from the spectroscopic HK' index for both M22 and NGC 1851. We also find a more than $8{\sigma}$ difference in CN band strength between the Ca-strong and Ca-weak subpopulations. For NGC 288, however, we detect the presence of a large difference only in the CN strength. The calcium abundances of the two subpopulations in this GC are identical within errors. We also find interesting differences in CN-CH relations among these GCs. While CN and CH indices are correlated in M22, they show an anti-correlation in NGC 288. However, NGC 1851 shows no difference in CH between two groups of stars having different CN strengths. The CN bimodality in these GCs could be explained by pollution from intermediate-mass asymptotic giant branch stars and/or fast-rotating massive stars. For the presence or absence of calcium bimodality and the differences in CN-CH relations, we suggest these would be best explained by how strongly type II supernovae enrichment has contributed to the chemical evolutions of these GCs.

THE OOSTERHOFF PERIOD GROUPS AND MULTIPLE POPULATIONS IN GLOBULAR CLUSTERS

  • JANG, SOHEE;LEE, YOUNG-WOOK;JOO, SEOK-JOO;NA, CHONGSAM
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.267-268
    • /
    • 2015
  • One of the long-standing problems in modern astronomy is the curious division of globular clusters (GCs) into two groups, according to the mean period (<$P_{ab}$>) of type ab RR Lyrae variables. In light of the recent discovery of multiple populations in GCs, we suggest a new model explaining the origin of the Sandage period-shift and the difference in mean period of type ab RR Lyrae variables between the two Oosterhoff groups. In our models, the instability strip in the metal-poor group II clusters, such as M15, is populated by second generation stars (G2) with enhanced helium and CNO abundances, while the RR Lyraes in the relatively metal-rich group I clusters like M3 are mostly produced by first generation stars (G1) without these enhancements. This population shift within the instability strip with metallicity can create the observed period-shift between the two groups, since both helium and CNO abundances play a role in increasing the period of RR Lyrae variables. The presence of more metal-rich clusters having Oosterhoff-intermediate characteristics, such as NGC 1851, as well as of most metal-rich clusters having RR Lyraes with the longest periods (group III) can also be reproduced, as more helium-rich third and later generations of stars (G3) penetrate into the instability strip with further increase in metallicity. Therefore, although there are systems where the suggested population shift cannot be a viable explanation, for the most general cases, our models predict that RR Lyraes are produced mostly by G1, G2, and G3, respectively, for the Oosterhoff groups I, II, and III.

Variable Blue Stragglers in the Metal-Poor Globular Clusters in the Large Magellanic Cloud - Hodge 11 and NGC1466

  • Yang, Soung-Chul;Bhardwaj, Anupam
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.35.2-35.2
    • /
    • 2021
  • Blue straggler stars (BSs) are "rejuvenated" main sequence stars first recognized by Allan Sandage from his observation of the prominent northern globular cluster M3 in the year of 1953. BSs are now known to be present in diverse stellar environments including open clusters, globular clusters, dwarf galaxies, and even the field populations of the Milky Way. This makes them a very useful tool in a wide range of astrophysical applications: Particularly BSs are considered to have a crucial role in the evolution of stellar clusters because they affect on the dynamics, the binary population, and the history of the stellar evolution of the cluster they belong to. Here we report a part of the preliminary results from our ongoing research on the BSs in the two metal-poor globular clusters (GCs) in the Large Magellanic Cloud (LMC), Hodge 11 and NGC1466. Using the high precision multi-band images obtained with the Advanced Camera for Survey (ACS) onboard the Hubble Space Telescope (HST), we extract time-series photometry to search for the signal of periodic variations in the luminosity of the BSs. Our preliminary results confirm that several BSs are intrinsic "short period (0.05 < P < 0.25 days)" variable stars with either pulsating or eclipsing types. We will discuss our investigation on the properties of those variable BS candidates in the context of the formation channels of these exotic main sequence stars, and their roles in the dynamical evolution of the host star clusters.

  • PDF

PMS EVOLUTION MODEL GRIDS AND THE INITIAL MASS FUNCTION

  • PARK BYEONG-GON;SUNG HWANKYUNG;KANG YONG HEE
    • Journal of The Korean Astronomical Society
    • /
    • v.35 no.4
    • /
    • pp.197-208
    • /
    • 2002
  • Five contemporary pre-main sequence (PMS) evolution model grids are compared with the photo-metric data for a nearly complete sample of low-mass members in NGC 2264. From amongst the grids compared, the models of Baraffe et al. (1998) prove to be the most reliable in mass-age distribution. To overcome the limited mass range of the models of Baraffe et al. we derived a simple transformation relation between the mass of a PMS star from Swenson et al. (1994) and that from Baraffe et al., and applied it to the PMS stars in NGC 2264 and the Orion nebula cluster (ONC). The resulting initial mass function (IMF) of the ONC shows that the previous interpretation of the IMF is not a real feature, but an artifact caused by the evolution models adopted. The IMFs of both clusters are in a good agreement with the IMF of the field stars in the solar neighborhood. This result supports the idea proposed by Lada, Strom, & Myers (1993) that the field stars originate from the stars that are formed in clusters and spread out as a result of dynamical dissociation. Nevertheless, the IMFs of OB associations and young open clusters show diverse behavior. For the low-mass regime, the current observations suffer from difficulties in membership assignment and sample incompleteness. From this, we conclude that a more thorough study of young open clusters is necessary in order to make any definite conclusions on the existence of a universal IMF.

The Oosterhoff period groups and multiple populations in globular clusters

  • Jang, Sohee;Lee, Young-Wook;Joo, Seok-Joo;Na, Chongsam
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.82.1-82.1
    • /
    • 2014
  • The presence of multiple populations is now well-established in most globular clusters (GCs) in the Milky Way. In light of this progress, here we suggest a new model explaining the origin of the Sandage period-shift and the difference in mean period of type ab RR Lyrae variables () between the two Oosterhoff groups. In our models, while matching the observed color-magnitude diagrams, the difference in is naturally reproduced as the instability strip is occupied by different subpopulations with increasing metallicity. The instability strip in the metal-poor group II clusters is populated by second generation stars (G2) with enhanced helium and CNO abundances, while the RR Lyraes in the metal-rich group I clusters are mostly produced by first generation stars (G1) without these enhancements. This population shift within the instability strip can create the observed period-shift between the two groups, since both helium and CNO abundances play a role in increasing the period of RR Lyrae variables. The presence of more metal-rich Oosterhoff group III clusters having RR Lyraes with longest can also be reproduced, if more helium-rich third generation stars (G3) are present in these GCs.

  • PDF

BLUE STRAGGLERS AND CLUMP STARS IN M67

  • Jung, Jae-Hoon;Lee, See-Woo
    • Journal of The Korean Astronomical Society
    • /
    • v.17 no.1
    • /
    • pp.37-49
    • /
    • 1984
  • UBV photoelectric observations were carried out for bright stars in M67 and the masses of clump stars and giant stars were derived in M67 and the other old open clusters, NGC 188, NGC 2420, NGC 2506 and IC 4651. The mean mass of clump stars in the five clusters ranges $m=0.5{\sim}1.0m_{\odot}$, and its ratio to the mean mass of giant stars is about 0.83. The number ratio of blue stragglers to the stars brighter than the turn-off of main sequence increases with cluster age whereas that of clump stars decreases with age. These results imply that the clump stars and blue stragglers are at the phase of horizontal branch evolution.

  • PDF

THE LORENTZ FORCE IN ATMOSPHERES OF CP STARS: θ AUR

  • VALYAVIN G.;KOCHUKHOV O.;SHULYAK D.;LEE B.-C.;GALAZUTDINOV G.;KIM K.-M.;HAN I.
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.283-287
    • /
    • 2005
  • The slow evolution of global magnetic fields and other dynamical processes in atmospheres of CP magnetic stars lead to the development of induced electric currents in all conductive atmospheric layers. The Lorentz force, which results from the interaction between a magnetic field and the induced currents, may modify the atmospheric structure and provide insight into the formation and evolution of stellar magnetic fields. This modification of the pressure-temperature structure influences the formation of absorption spectral features producing characteristic rotational variability of some spectral lines, especially the Balmer lines (Valyavin et al., 2004 and references therein). In order to study these theoretical predictions we began systematic spectroscopic survey of Balmer line variability in spectra of brightest CP magnetic stars. Here we present the first results of the program. A0p star $\Theta$ Aur revealed significant variability of the Balmer profiles during the star's rotation. Character of this variablity corresponds to that classified by Kroll (1989) as a result of an impact of significant Lorentz force. From the obtained data we estimate that amplitudes of the variation at H$\alpha$, H$\beta$, H$\gamma$ and H$\delta$ profiles reach up to $2.4\%$during full rotation cycle of the star. Using computation of our model atmospheres (Valyavin et al., 2004) we interpret these data within the framework of the simplest model of the evolution of global magnetic fields in chemically peculiar stars. Assuming that the field is represented by a dipole, we estimate the characteristic e.m.f. induced by the field decay electric current (and the Lorentz force as the result) on the order of $E {\~} 10^{-11}$ cgs units, which may indicate very fast (< < $10^{10}$ years) evolution rate of the field. This result strongly contradicts the theoretical point of view that global stellar magnetic fields of CP stars are fossil and their the characteristic decay time of about $10^{10}$ yr. Alternatively, we briefly discuss concurring effects (like the ambipolar diffusion) which may also lead to significant atmospheric currents producing the observable Lorentz force.

PHOTOMETRIC EVOLUTION OF OPEN CLUSTERS AND ASSOCIATIONS

  • LEE SEE-WOO;PARK WON-KEE
    • Journal of The Korean Astronomical Society
    • /
    • v.26 no.1
    • /
    • pp.47-64
    • /
    • 1993
  • The photometric evolution of cluster stars are examined for six synthetic clusters in the age range from $2.4\times10^6\;yr\;to\;7.6\times10^8yr$ by using the detailed evolutionary model calculation, and their results are compared with the observed integrated absolute magnitude and colors of 47 clusters. The reasonable agreements of the observed photometric parameters with the synthetic evolutionary sequences imply that there is a general form of time-dependent IMF including the noncoeval formation of stars and its detailed function is changed slightly with various environmental conditions of each primordial cloud.

  • PDF

X-Ray, UV and Optical Observations of Classical Cepheids: New Insights into Cepheid Evolution, and the Heating and Dynamics of Their Atmospheres

  • Engle, Scott G.;Guinan, Edward F.
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.2
    • /
    • pp.181-189
    • /
    • 2012
  • To broaden the understanding of classical Cepheid structure, evolution and atmospheres, we have extended our continuing secret lives of Cepheids program by obtaining XMM/Chandra X-ray observations, and Hubble space telescope (HST) / cosmic origins spectrograph (COS) FUV-UV spectra of the bright, nearby Cepheids Polaris, ${\delta}$ Cep and ${\beta}$ Dor. Previous studies made with the international ultraviolet explorer (IUE) showed a limited number of UV emission lines in Cepheids. The well-known problem presented by scattered light contamination in IUE spectra for bright stars, along with the excellent sensitivity & resolution combination offered by HST/COS, motivated this study, and the spectra obtained were much more rich and complex than we had ever anticipated. Numerous emission lines, indicating $10^4$ K up to ${\sim}3{\times}10^5$ K plasmas, have been observed, showing Cepheids to have complex, dynamic outer atmospheres that also vary with the photospheric pulsation period. The FUV line emissions peak in the phase range ${\varphi}{\approx}0.8-1.0$ and vary by factors as large as $10{\times}$. A more complete picture of Cepheid outer atmospheres is accomplished when the HST/COS results are combined with X-ray observations that we have obtained of the same stars with XMM-Newton & Chandra. The Cepheids detected to date have X-ray luminosities of log $L_X{\approx}28.5-29.1$ ergs/sec, and plasma temperatures in the $2-8{\times}106$ K range. Given the phase-timing of the enhanced emissions, the most plausible explanation is the formation of a pulsation-induced shocks that excite (and heat) the atmospheric plasmas surrounding the photosphere. A pulsation-driven ${\alpha}^2$ equivalent dynamo mechanism is also a viable and interesting alternative. However, the tight phase-space of enhanced emission (peaking near 0.8-1.0 ${\varphi}$) favor the shock heating mechanism hypothesis.

MODEL DUST ENVELOPES FOR ASYMPTOTIC GIANT BRANCH STARS. I. OH/IR STARS

  • Suh, Kyung-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.157-167
    • /
    • 1995
  • OH/IR stars are the most massive and youngest subclass in asymptotic giant branch stars which pass through sporadic superwind phases. We have modeled the dust envelopes around OH/IR stars with close attention to the evolution of the structure of the dust shells. We use various dust density distributions to take account the effect of the superwind due to the helium shell flash by adding a density increased region. Depending on the position and quality of the density increased region, the model results are different from the results with conventional density distribution. The new results fit the observations of some OH/IR stars better. Especially, the OH/IR stars with excessive 30-100$\mu$m emission can be better explained by the new results. The IR two-color diagrams comparing the results of the superwind models and IRAS observation of 95 OH/IR stars have been made. The new results can explain much wider regions on the IR two-color diagrams.

  • PDF