• Title/Summary/Keyword: evolution-stars

Search Result 296, Processing Time 0.023 seconds

A FULLY EMPIRICAL APPROACH TO GALAXY EVOLUTION

  • Renzini, Alvio
    • Publications of The Korean Astronomical Society
    • /
    • v.25 no.3
    • /
    • pp.65-69
    • /
    • 2010
  • Observations of large samples of galaxies from low to high redshifts are composing a picture of remarkable simplicity: (1) The star formation rate (SFR) of starforming galaxies scales almost linearly with mass, strongly decline with cosmic time, and exhibits very small scatter around the average relation. (2) Due to the high observed SFRs the mass of galaxies at high redshifts must increase very rapidly, and yet the mass function of star forming galaxies evolves only very slightly with redshift. (3) At all redshifts the fraction of quenched (passively evolving) galaxies increases with galactic stellar mass and with local overdensity, with the remarkable property that the relative efficiency of "mass quenching" is independent of environment, and that of "environment quenching" is independent of mass. In a recent paper by the zCOSMOS collaboration, Peng et al. (2010) demonstrate that these three empirical facts suffice to account for the observed evolution of the galaxy mass function and naturally generate the "double-Schechter" mass function for quenched galaxies.

Distance measurements for double red clump in the Milky Way bulge using Gaia DR2

  • Lim, Dongwook;Hong, Seungsoo;Lee, Young-Wook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.39.3-40
    • /
    • 2018
  • The presence of double red clump (RC) in the Milky Way bulge is widely accepted as evidence for a giant X-shaped structure originated from the bar instability. We suggested, however, a drastically different interpretation based on the multiple stellar populations phenomenon as is observed in globular clusters. Our discovery of a significant difference in CN-band between two RCs strengthens our scenario. On the other hand, recent Gaia survey provides trigonometric parallax distances for more than one billion stars in our Galaxy. These distance measurements would provide the important test as to the origin of the double RC in the Milky Way bulge. In this talk, we will present our preliminary results from Gaia DR2.

  • PDF

Cosmological N-body simulations for Intracluster Light using the Galaxy Repacement Technique

  • Chun, Kyungwon;Shin, Jihye;Smith, Rory;Ko, Jongwan;Yoo, Jaewon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.29.2-29.2
    • /
    • 2021
  • Intracluster light (ICL) is composed of the stars diffused throughout the galaxy cluster but does not bound to any galaxy. The ICL is a ubiquitous feature of galaxy clusters and occupies a significant fraction of the total stellar mass in the cluster. Therefore, the ICL components are believed to help understand the formation and evolution of the clusters. However, in the numerical study, one needs to perform the high-resolution cosmological hydrodynamic simulations, which require an expensive calculation, to trace these low-surface brightness structures (LSB). Here, we introduce the Galaxy Replacement Technique (GRT) that focuses on implementing the gravitational evolution of the diffused ICL structures without the expensive baryonic physics. The GRT reproduces the ICL structures by a multi-resolution cosmological N-body re-simulation using a full merger tree of the cluster from a low-resolution DM-only cosmological simulation and an abundance matching model. Using the GRT, we show the preliminary results about the evolution of the ICL in the on-going simulations for the various clusters.

  • PDF

Dependence of Halo Properties on Galactic Potentials

  • Kim, Youngkwang;Lee, Young Sun;Beers, Timothy C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.51.1-51.1
    • /
    • 2017
  • We present the dependence of halo properties on two different Galactic potentials: the $St{\ddot{a}}ckel$ potential and the Milky Way-like potential known as "Galpy". Making use of the Sloan Digital Sky Survey Data Release 12 (SDSS DR12), we find that the shape of the metallicity distribution and rotation velocity distribution abruptly changes at 15 kpc of $Z_{max}$ (the maximum distance of stellar orbit above or below the Galactic plane) and 32 kpc of $r_{max}$ (the maximum distance of an orbit from the Galactic center) in the $St{\ddot{a}}ckel$, which indicates that the transition from the inner to outer halo occurs at those distances. When adopting the $St{\ddot{a}}ckel$ potential, stars with $Z_{max}$ > 15 kpc show a retrograde motion of $V_{\phi}=-60km\;s^{-1}$, while stars with $r_{max}$ > 32 kpc show $V_{\phi}=-150km\;s^{-1}$. If we impose $V_{\phi}$ < $-150km\;s^{-1}$ to the stars with $Z_{max}$> 15 kpc or $r_{max}$> 32, we obtain the peak of the metallicity distribution at [Fe/H] = -1.9 and -1.7 respectively. However, there is the transition of the metallicity distribution at $Z_{max}=25kpc$, whereas there is no noticeable retrograde motion in the Galpy. The reason for this is that stars with high retrograde motion in the $St{\ddot{a}}ckel$ potential are unbound and stars with low rotation velocity reach to larger region of $Z_{max}$ and $r_{max}$ due to shallower potential in the Galpy. These results prove that as the adopted Galactic potential can affect the interpretation of the halo properties, it is required to have a more realistic Galactic potential for the thorough understanding of the dichotomy of the Galactic halo.

  • PDF

A SIMPLE DISK-HALO MODEL FOR THE CHEMICAL EVOLUTION OF OUR GALAXY

  • Lee, S.W.;Ann, H.B.
    • Journal of The Korean Astronomical Society
    • /
    • v.14 no.2
    • /
    • pp.55-71
    • /
    • 1981
  • On the basis of observational constraints, particularly the relationship between metal abundance and cumulative stellar mass, a simple two-zone disk-halo model for the chemical evolution of our Galaxy was investigated, assuming different chemical processes in the disk and halo and the infall rates of the halo gas defined by the halo evolution. The main results of the present model calculations are: (i) The halo formation requires more than 80% of the initial galactic mass and it takes a period of $2{\sim}3{\times}10^9$ yrs. (ii) The halo evolution is divided into two phases, a fast collapse phase ($t=2{\sim}3{\times}10^8$ yrs) during which period most of the halo stars $({\sim}95%)$ are formed and a later slow collapse phase which is characterized by the chemical enrichment due to the inflow of external matter to the halo. (iii) The disk evolution is also divided into two phases, an active disk formation phase with a time-dependent initial mass function (IMF) up to $t{\approx}6{\times}10^9$ yrs and a later steady slow formation phase with a constant IMF. It is found that at the very early time $t{\approx}5{\times}10^8$ yrs, the metal abundance in the disk is rapidly increased to ${\sim}1/3$ of the present value but the total stellar mass only to ${\sim}10%$ of the present value, finally reaching about 80% of the present values toward the end of the active formation phase.

  • PDF

On the Nature of LINERs: A Clue from Keck/LRIS Observations

  • Bae, Hyun-Jin;Yagi, Masafumi;Woo, Jong-Hak;Yoshida, Michitoshi;Yoon, Suk-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.61.2-61.2
    • /
    • 2011
  • Low-ionization nuclear emission-line regions (LINERs) have been generally regarded to be powered by active galactic nuclei (AGNs), yet still a number of alternative explanations on the origin of LINER emission are suggested; for example, planetary nebulae nuclei of massive stars, supernovae shocks from death of massive stars, and old stellar populations. Interestingly, a majority of recent star formation early-type galaxies (ETGs) in local universe presents such LINER emission lines. Given that situation, revealing the true nature of LINERs is a crucial step to constrain the evolution path to quiescent ETGs. To resolve the issue, we use Keck/LRIS to obtain spatially resolved spectra on a carefully selected ETG. The ETG SDSS J091628.05+420818.7 at redshift z ~ 0.024 shows modest LINER emission line features without any detection of 21 cm radio continuum nor X-ray emission. We perform a stellar continuum subtraction and measure emission line strengths and their uncertainties for each spectrum from five apertures along the slit with size of 1 arcsecond (~0.5 kpc). We find that extended spatial distributions of four emission lines $H{\alpha}$, $H{\beta}$, [OIII]${\lambda}5007$, and [NII]${\lambda}6583$, and they can be explained by central emission blurring effect. We conclude that the emissions seem to be centrally concentrated, indicating the AGN-nature of LINERs.

  • PDF

Star-gas misalignment in Horizon-AGN simulation

  • Khim, Donghyeon J.;Yi, Sukyoung K.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.74.3-75
    • /
    • 2019
  • Recent Integral Field Spectroscopy (IFS) studies revealed that not only late type galaxies (LTGs) but also early type galaxies (ETGs) have various kinds of kinematic rotation. (e.g. not clearly detectable rotation, disk-like rotation, kinematically distinct core (Cappellari 06)) Among the various studies about galactic kinematics, one of the most notable anomalies is the star-gas misalignment. The gas forms stars and stars release gas through mass-loss. In this process, their angular momentum is conserved. Therefore, kinematic decoupling between stars and gas can occur due to external gas inflow or perturbation of components. There are some possible origins of misalignment: cold gas from filaments, hot gas from outer halo, interaction or merging events with galaxies and environmental effects. Misalignment, the black box from mixture of internal and external gas, can be an important keyword for understanding further about galaxies' kinematics and external processes. Using both SAMI IFS data(Sydney-AAO Multi-object Integral field spectrograph Galaxy Survey, Croom+12) and Horizon-AGN simulation(Dubois+14), we examined misaligned galaxies properties and distribution. Because the simulation has lots of galaxies at various z, we were able to study history of formation, evolution and extinction of misalignment, which was hard to be done with observation only.

  • PDF

The Origin of the Type III Component in the Black Eye Galaxy M64

  • Kang, Jisu;Kim, Yoo Jung;Lee, Myung Gyoon;Jang, In Sung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.52.2-52.2
    • /
    • 2021
  • The Black Eye Galaxy M64 is an intriguing spiral galaxy with a Type III disk break. To trace the origin of its Type III component, we present HST/ACS F606W/F814W photometry of resolved stars in the outer disk of M64 (2.5' < R < 6.5'). First, we discover a bright extended globular cluster (GC) M64-GC1 at R ~ 5.5', and find that it is an old metal-poor halo GC ([Fe/H] = -1.5 +/- 0.2). Second, we find that there are two distinct subpopulations of red giant branch stars (RGBs). One is an old metal-rich ([Fe/H] ~ -0.4) disk population, and the other is an old metal-poor halo population similar to the resolved stars in M64-GC1. The radial number density profile of the metal-rich RGB follows an exponential disk law, while that of the metal-poor RGB follows a de Vaucouleurs's low. From these results, we conclude that the origin of the Type III component in M64 is a halo, not a disk or a bulge. We will further discuss the results in regards to the formation and evolution of M64.

  • PDF

Distance and Reddening of NGC 6791 using Empirically Calibrated Isochrones

  • An, Deokkeun;Terndrup, Donald M.;Pinsonneault, Marc H.;Lee, Jaewoo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.70.4-70.4
    • /
    • 2015
  • Although the theory of stellar structure and evolution is considered one of the most successful developments in astrophysics, there still remains a significant mismatch between theoretical stellar models and the observed main sequence of the best studied nearby open clusters. To ease the tension, empirical corrections to the color-temperature transformations are used as a simple, but practical way of overcoming the difficulty than directly examining stellar atmosphere models that have large theoretical complexities and uncertainties. I will describe our continuing effort to calibrate stellar isochrones using cool main-sequence stars in Praesepe, complementing our previous work based on the Hyades and the Pleiades, and provide an extensive test of our models using photometry of cool and metal-rich main-sequence stars in NGC 6791. Finally, I will discuss the implication of our results on the mass loss in NGC 6791.

  • PDF

THE GALACTIC OPEN CLUSTER NGC 6531 (M21)

  • PARK BYEONG-GON;SUNG HWANKYUNG;KANG YONG HEE
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.3
    • /
    • pp.149-155
    • /
    • 2001
  • UBV RI and H$\alpha$ photometry has been performed for the open cluster NGC 6531. A total of 56 bright main sequence (MS) members were selected from their positions in photometric diagrams. We also classified 7 pre-main sequence (PMS) stars and 6 PMS candidates with Ha: emission from H$\alpha$ photometry. We determined a reddening of < E(B - V) >= 0.29 $\pm$ 0.03 and a distance modulus of Vo - Mv = 10.5 for the cluster. From the comparison of our photometric results to theoretical evolution models, we derived a MS turnoff age of 7.5 Myr and a PMS age spread of $\~$4 Myr. The IMF slope $\Gamma$, calculated in the mass range of 0.45 $\le$ log m $\le$ 1.35 is a steep value of $\Gamma$ = -1.8 $\pm$ 0.6.

  • PDF