• Title/Summary/Keyword: evolution family

Search Result 395, Processing Time 0.019 seconds

Molecular Characterization and Expression Analysis of Peroxiredoxin 2 cDNA from Abalone (Haliotis discus hannai) (참전복(Haliotis discus hannai)에서 분리한 peroxiredoxin 2 유전자의 분자생물학적 고찰 및 발현분석)

  • Moon, Ji Young;Park, Eun Hee;Kong, Hee Jeong;Kim, Young-Ok;Kim, Dong-Gyun;An, Cheul Min;Nam, Bo-Hye
    • Journal of Life Science
    • /
    • v.24 no.12
    • /
    • pp.1291-1300
    • /
    • 2014
  • Peroxiredoxins (Prxs) are a ubiquitous family of antioxidant enzymes that participate in a variety of biological processes, including $H_2O_2$-mediated signal transduction, molecular chaperoning, and mitochondrial function. In this study, we isolated and characterized a Prx 2 cDNA from abalone (Haliotis discus hannai). The abalone Prx 2 cDNA encoded a 199-amino acid polypeptide that belongs to a class of typical 2-Cys Prxs that contain peroxidatic and resolving cysteines. The deduced abalone Prx 2 protein showed strong homology (64-99%) with Prx 2 proteins from other species, including mollusk, fish, amphibians, and mammals, and it was most closely related to disk abalone (H. discus discus) Prx 2. Abalone Prx 2 mRNA was ubiquitously detected in tested tissues, and its expression was comparatively high in the mantle, gills, liver, foot, and digestive duct. The expression level of abalone Prx 2 mRNA was 106.7-fold, 51.9-fold, and 437.8-fold higher, respectively, in the gills, digestive duct, and liver than in the muscles. The expression level of abalone Prx 2 mRNA in the liver peaked at 6 hr postinfection with Vibrio parahemolyticus and decreased at 12 hr postinfection. The expression level of abalone Prx 2 mRNA in hemocytes was drastically increased at 1 hr postinfection with V. parahemolyticus. These results suggest that abalone Prx 2 is conserved through evolution and that it may play a role similar to that of its mammalian counterpart.

Comprehensive comparative analysis of chloroplast genomes from seven Panax species and development of an authentication system based on species-unique single nucleotide polymorphism markers

  • Nguyen, Van Binh;Giang, Vo Ngoc Linh;Waminal, Nomar Espinosa;Park, Hyun-Seung;Kim, Nam-Hoon;Jang, Woojong;Lee, Junki;Yang, Tae-Jin
    • Journal of Ginseng Research
    • /
    • v.44 no.1
    • /
    • pp.135-144
    • /
    • 2020
  • Background: Panax species are important herbal medicinal plants in the Araliaceae family. Recently, we reported the complete chloroplast genomes and 45S nuclear ribosomal DNA sequences from seven Panax species, two (P. quinquefolius and P. trifolius) from North America and five (P. ginseng, P. notoginseng, P. japonicus, P. vietnamensis, and P. stipuleanatus) from Asia. Methods: We conducted phylogenetic analysis of these chloroplast sequences with 12 other Araliaceae species and comprehensive comparative analysis among the seven Panax whole chloroplast genomes. Results: We identified 1,128 single nucleotide polymorphisms (SNP) in coding gene sequences, distributed among 72 of the 79 protein-coding genes in the chloroplast genomes of the seven Panax species. The other seven genes (including psaJ, psbN, rpl23, psbF, psbL, rps18, and rps7) were identical among the Panax species. We also discovered that 12 large chloroplast genome fragments were transferred into the mitochondrial genome based on sharing of more than 90% sequence similarity. The total size of transferred fragments was 60,331 bp, corresponding to approximately 38.6% of chloroplast genome. We developed 18 SNP markers from the chloroplast genic coding sequence regions that were not similar to regions in the mitochondrial genome. These markers included two or three species-specific markers for each species and can be used to authenticate all the seven Panax species from the others. Conclusion: The comparative analysis of chloroplast genomes from seven Panax species elucidated their genetic diversity and evolutionary relationships, and 18 species-specific markers were able to discriminate among these species, thereby furthering efforts to protect the ginseng industry from economically motivated adulteration.

A Field Survey on Facility Management and Anglers' Requirements at Recreational Sea-fishing Parks (바다낚시공원 시설운영 및 낚시인 요구사항 조사 연구)

  • Kang, Young-Hun;Hong, Sung-Ki;Lee, Han-Seok
    • Journal of Navigation and Port Research
    • /
    • v.39 no.6
    • /
    • pp.529-538
    • /
    • 2015
  • This paper was intended to empirically identify problems with recreational sea fishing park facilities installed to help reinvigorate local economy of fishing villages in order to mitigate shortage of fishing facilities amid an increase in sea fishers and spur evolution of sea fishing into a marine leisure activity, on which basis this researcher presented direction for facility planning which is deemed necessary to map out the plan for sea fishing parks, along with measures designed to improve sea fishing park facilities. To analyze the problems related to sea fishing park facilities, we conducted a survey on facility operations involving 9 sea fishing parks and 2 sea ranches and had an investigative interview with facility manager. Moreover, a survey was conducted of fishers in 25 sea fishing places, including sea fishing park, fishing experience village, etc., in order to investigate their demand for facilities. The results of survey suggested that there was a significant demand for expansion of amenities such as safety facilities, toilets, lounge facilities, etc., which can accommodate the increase in the number of people fishing with family. Furthermore, the results showed that there was a huge demand for introduction of facilities aiding leisure activities in addition to facilities for fishing activities including education facilities such as fishing site at the corner exclusive for beginners, experiential facilities, camping site, seaside park, promenade, etc. Thus, sea fishing park should be the complex leisure space with a focus on fishing activities and requires facility configuration and facility planning suited to activity requirements within fishing park.

Present Status and Future Management Strategies for Sugarcane Yellow Leaf Virus: A Major Constraint to the Global Sugarcane Production

  • Holkar, Somnath Kadappa;Balasubramaniam, Parameswari;Kumar, Atul;Kadirvel, Nithya;Shingote, Prashant Raghunath;Chhabra, Manohar Lal;Kumar, Shubham;Kumar, Praveen;Viswanathan, Rasappa;Jain, Rakesh Kumar;Pathak, Ashwini Dutt
    • The Plant Pathology Journal
    • /
    • v.36 no.6
    • /
    • pp.536-557
    • /
    • 2020
  • Sugarcane yellow leaf virus (SCYLV) is a distinct member of the Polerovirus genus of the Luteoviridae family. SCYLV is the major limitation to sugarcane production worldwide and presently occurring in most of the sugarcane growing countries. SCYLV having high genetic diversity within the species and presently ten genotypes are known to occur based on the complete genome sequence information. SCYLV is present in almost all the states of India where sugarcane is grown. Virion comprises of 180 coat protein units and are 24-29 nm in diameter. The genome of SCYLV is a monopartite and comprised of single-stranded (ss) positive-sense (+) linear RNA of about 6 kb in size. Virus genome consists of six open reading frames (ORFs) that are expressed by sub-genomic RNAs. The SCYLV is phloem-limited and transmitted by sugarcane aphid Melanaphis sacchari in a circulative and non-propagative manner. The other aphid species namely, Ceratovacuna lanigera, Rhopalosiphum rufiabdominalis, and R. maidis also been reported to transmit the virus. The virus is not transmitted mechanically, therefore, its transmission by M. sacchari has been studied in different countries. SCYLV has a limited natural host range and mainly infect sugarcane (Sachharum hybrid), grain sorghum (Sorghum bicolor), and Columbus grass (Sorghum almum). Recent insights in the protein-protein interactions of Polerovirus through protein interaction reporter (PIR) technology enable us to understand viral encoded proteins during virus replication, assembly, plant defence mechanism, short and long-distance travel of the virus. This review presents the recent understandings on virus biology, diagnosis, genetic diversity, virus-vector and host-virus interactions and conventional and next generation management approaches.

Sequence variation of necdin gene in Bovidae

  • Peters, Sunday O.;Donato, Marcos De;Hussain, Tanveer;Rodulfo, Hectorina;Babar, Masroor E.;Imumorin, Ikhide G.
    • Journal of Animal Science and Technology
    • /
    • v.60 no.12
    • /
    • pp.32.1-32.10
    • /
    • 2018
  • Background: Necdin (NDN), a member of the melanoma antigen family showing imprinted pattern of expression, has been implicated as causing Prader-Willi symptoms, and known to participate in cellular growth, cellular migration and differentiation. The region where NDN is located has been associated to QTLs affecting reproduction and early growth in cattle, but location and functional analysis of the molecular mechanisms have not been established. Methods: Here we report the sequence variation of the entire coding sequence from 72 samples of cattle, yak, buffalo, goat and sheep, and discuss its variation in Bovidae. Median-joining network analysis was used to analyze the variation found in the species. Synonymous and non-synonymous substitution rates were determined for the analysis of all the polymorphic sites. Phylogenetic analysis were carried out among the species of Bovidae to reconstruct their relationships. Results: From the phylogenetic analysis with the consensus sequences of the studied Bovidae species, we found that only 11 of the 26 nucleotide changes that differentiate them produced amino acid changes. All the SNPs found in the cattle breeds were novel and showed similar percentages of nucleotides with non-synonymous substitutions at the N-terminal, MHD and C-terminal (12.3, 12.8 and 12.5%, respectively), and were much higher than the percentage of synonymous substitutions (2.5, 2.6 and 4.9%, respectively). Three mutations in cattle and one in sheep, detected in heterozygous individuals were predicted to be deleterious. Additionally, the analysis of the biochemical characteristics in the most common form of the proteins in each species show very little difference in molecular weight, pI, net charge, instability index, aliphatic index and GRAVY (Table 4) in the Bovidae species, except for sheep, which had a higher molecular weight, instability index and GRAVY. Conclusions: There is sufficient variation in this gene within and among the studied species, and because NDN carry key functions in the organism, it can have effects in economically important traits in the production of these species. NDN sequence is phylogenetically informative in this group, thus we propose this gene as a phylogenetic marker to study the evolution and conservation in Bovidae.

A non-invasive sexing method reveals the patterns of sex-specific incubation behavior in Saunders's Gulls (Saundersilarus saundersi) (비침습적 성감별 방법에 의한 검은머리갈매기(Saundersilarus saundersi)의 암수 포란행동)

  • Joo, Eun-Jin;Ha, Mi-Ra;Jeong, Gilsang;Yoon, Jongmin
    • Korean Journal of Ornithology
    • /
    • v.25 no.2
    • /
    • pp.69-76
    • /
    • 2018
  • Sexual dimorphism in birds refers to male-female differences in body size, plumage, color and/or behavior. In general, many seabirds, including the family of Laridae, are monomorphic in plumage-color, which makes the determination of sex difficult in the field because both parents also tend to share a great portion of parental care. The development of an inexpensive sexing tool facilitates understanding the degree of sex-specific parental care in the evolution of the life history. Here, we developed a non-invasive method for the determination of sex using the bill-head morphometric of known captive pairs and applied this tool to wild pairs to document factors underlying male-female parental care during the incubation period of Saunders's gulls (Saundersilarus saundersi). Males exhibited relatively larger bill-head ratios than their mates within naturally formed pairs in captivity, resulting in the determination of sex in12 wild pairs at the nest during the incubation period. Males and females equally shared the incubation role during the daytime, attending the nest at a high rate of 95%. However, the male's proportion of nest attentiveness greatly increased with time towards sunset, presumably reflecting the male duty for nighttime incubation. The present study provides a non-invasive method for the determination of sex in a monomorphic seagull species and highlights how male-female incubation behavior is associated with time of the day, rather than other ecological conditions.

Small CNN-RNN Engraft Model Study for Sequence Pattern Extraction in Protein Function Prediction Problems

  • Lee, Jeung Min;Lee, Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.8
    • /
    • pp.49-59
    • /
    • 2022
  • In this paper, we designed a new enzyme function prediction model PSCREM based on a study that compared and evaluated CNN and LSTM/GRU models, which are the most widely used deep learning models in the field of predicting functions and structures using protein sequences in 2020, under the same conditions. Sequence evolution information was used to preserve detailed patterns which would miss in CNN convolution, and the relationship information between amino acids with functional significance was extracted through overlapping RNNs. It was referenced to feature map production. The RNN family of algorithms used in small CNN-RNN models are LSTM algorithms and GRU algorithms, which are usually stacked two to three times over 100 units, but in this paper, small RNNs consisting of 10 and 20 units are overlapped. The model used the PSSM profile, which is transformed from protein sequence data. The experiment proved 86.4% the performance for the problem of predicting the main classes of enzyme number, and it was confirmed that the performance was 84.4% accurate up to the sub-sub classes of enzyme number. Thus, PSCREM better identifies unique patterns related to protein function through overlapped RNN, and Overlapped RNN is proposed as a novel methodology for protein function and structure prediction extraction.

Comparative transcriptome and metabolome analyses of four Panax species explore the dynamics of metabolite biosynthesis

  • Hyunjin, Koo;Yun Sun, Lee;Van Binh, Nguyen;Vo Ngoc Linh, Giang;Hyun Jo, Koo;Hyun-Seung, Park;Padmanaban, Mohanan;Young Hun, Song;Byeol, Ryu;Kyo Bin, Kang;Sang Hyun, Sung;Tae-Jin, Yang
    • Journal of Ginseng Research
    • /
    • v.47 no.1
    • /
    • pp.44-53
    • /
    • 2023
  • Background: The genus Panax in the Araliaceae family has been used as traditional medicinal plants worldwide and is known to biosynthesize ginsenosides and phytosterols. However, genetic variation between Panax species has influenced their biosynthetic pathways is not fully understood. Methods: Simultaneous analysis of transcriptomes and metabolomes obtained from adventitious roots of two tetraploid species (Panax ginseng and P. quinquefolius) and two diploid species (P. notoginseng and P. vietnamensis) revealed the diversity of their metabolites and related gene expression profiles. Results: The transcriptome analysis showed that 2,3-OXIDOSQUALENE CYCLASEs (OSCs) involved in phytosterol biosynthesis are upregulated in the diploid species, while the expression of OSCs contributing to ginsenoside biosynthesis is higher in the tetraploid species. In agreement with these results, the contents of dammarenediol-type ginsenosides were higher in the tetraploid species relative to the diploid species. Conclusion: These results suggest that a whole-genome duplication event has influenced the triterpene biosynthesis pathway in tetraploid Panax species during their evolution or ecological adaptation. This study provides a basis for further efforts to explore the genetic variation of the Panax genus.

Evolution of Healthcare Service Disparities: A Case Study of Primary Care Services in Korea, 1995-2021 (보건의료 서비스의 공간적 불균등 분포 변이에 대한 연구: 1995년부터 2021년까지 초기진료기관을 대상으로)

  • Hyun Kim;Yena Song
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.289-309
    • /
    • 2023
  • While South Korea's universal healthcare system has garnered attention in public health, the issue of inequality in healthcare service provision among different age groups has incessantly become a significant concern. The focus of this concern is primarily on essential healthcare services, encompassing fundamental aspects of healthcare such as internal medicine, family medicine, and pediatric and adolescent care. This inequality is not limited to differences among age groups (both junior and senior demographics) but also extends to potential disparities in healthcare services based on geographic location, particularly in urban and rural contexts. This paper aims to investigate disparities in primary healthcare service resources in South Korea's evolving economic landscape between 1995 and 2021. We utilize a set of inequality indices with a spatial perspective through geographic cluster analysis. The findings reveal that concerns about inequality have been amplified during various economic events, including the IMF crisis in 1999, the global financial crisis in 2008, and the COVID-19 pandemic in 2020. These years are identified as significant phases that have contributed to manifesting spatial disparities in primary healthcare provisions, with a particular emphasis on the senior-aged population rather than junior or all population groups. Our findings underscore the pressing need to address the unequal distribution of essential healthcare resources as part of preparedness for potential economic impacts, requiring a comprehensive consideration of the interconnected nature of demographic and spatial dimensions in healthcare services.

Genetic Studies on the Sea Urchin Embryogenesis and Skeletogenesis (성게의 발생과 뼈대형성의 유전학적 연구)

  • Lee, Youn-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.4
    • /
    • pp.265-273
    • /
    • 2001
  • The sea urchin has been used as sea food in many countries. This species has also been an important organism of embryological studies for more than a century. In recent years, sea urchin embryos are being used as testing materials for toxicity of pollutants and toxins. Usefulness of sea urchin embryos as experimental models comes from the easiness in obtaining sea urchin samples and a lot of gametes, in rearing embryos in the laboratory, in observing the cellular movement and organ formation during the embryogenesis and in manipulating blastomeres and genetic maferials. The sea urchin in itself is a key organism for the understanding of deuterostome evolution from the protostomes and of indirect development of marine invertebrates which undergo the planktotrophic larval stage. A fertilized sea urchin egg goes through rapid cleavage and becomes a 60 cell embryo 7hr after fertilization. It then develops into a morula, a blastula, a gastrula and finally a pluteus larva approximately 70 hr after fertilization. At the 60 cell stage, the embryo comprises of five territories that express territory-speciflc genes and later form different organs. Micromeres at the vegetal pole ingress into the blastoceol and become the primary mesenchyme cells(PMCs). PMCs express genes involved in skeletogenesis such as SM30, SM37, SM50, PM27, msp130. Among the genes, SM37 and SM50 are considered to be members of a gene family which is characterized by early blastula expression, Glycine-Proline-Glutamine rich repeat structures and spicule matrix forming basic proteins. Genetic studies on the sea urchin embryos help understand the molecular basis of indirect development of marine invertebrates and also of the biomineralization common to the animal kingdom.

  • PDF