• Title/Summary/Keyword: eventually expansive

Search Result 10, Processing Time 0.024 seconds

A Study on the Cracking Control Effects of Shrinkage Reduction Concrete (수축보상형 콘크리트의 균열억제 효과에 관한 연구)

  • Choi, Hyeong-Gil;Kim, Gyu-Yong;Noguchi, Takafumi
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.5
    • /
    • pp.569-577
    • /
    • 2015
  • The aim of this study is to qualitatively evaluate the cracking control effects of expansive concrete used in reinforced concrete building. The result of experiments in laboratory shows that autogenous shrinkage and drying shrinkage are suppressed by using expansive additive. The tensile stress-strength ratio is lower in expansive concrete than normal concrete under fully restrained condition. Compression stress could be effectively generated in early age in the walls in buildings by the use of expansive additive, and tensile stress due to drying shrinkage at later age eventually decreased. Additionally, visual observation at long-term ages shows that the cracking area of expansive concrete was approximately 35% of normal concrete, which confirms that the use of expansive additive reduces concrete cracking in reinforced concrete buildings.

ON DISTRIBUTIONS IN GENERALIZED CONTINUED FRACTIONS

  • AHN, YOUNG-HO
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.6 no.2
    • /
    • pp.1-8
    • /
    • 2002
  • Let $T_{\phi}$ be a generalized Gauss transformation and $[a_1,\;a_2,\;{\cdots}]_{T_{\phi}}$ be a symbolic representation of $x{\in}[0,\;1)$ induced by $T_{\phi}$, i.e., generalized continued fraction expansion induced by $T_{\phi}$. It is shown that the distribution of relative frequency of [$k_1,\;{\cdots},\;k_n$] in $[a_1,\;a_2,\;{\cdots}]_{T_p}$ satisfies Central Limit Theorem where $k_i{\in}{\mathbb{N}}$ for $1{\leq}i{\leq}n$.

  • PDF

Analytical model of corrosion-induced cracking of concrete considering the stiffness of reinforcement

  • Bhargava, Kapilesh;Ghosh, A.K.;Mori, Yasuhiro;Ramanujam, S.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.6
    • /
    • pp.749-769
    • /
    • 2003
  • The structural deterioration of concrete structures due to reinforcement corrosion is a major worldwide problem. Service life of the age-degraded concrete structures is governed by the protective action provided by the cover concrete against the susceptibility of the reinforcement to the corrosive environment. The corrosion of steel would result in the various corrosion products, which depending on the level of the oxidation may have much greater volume than the original iron that gets consumed by the process of corrosion. This volume expansion would be responsible for exerting the expansive radial pressure at the steel-concrete interface resulting in the development of hoop tensile stresses in the surrounding cover concrete. Once the maximum hoop tensile stress exceeds the tensile strength of the concrete, cracking of cover concrete would take place. The cracking begins at the steel-concrete interface and propagates outwards and eventually resulting in the through cracking of the cover concrete. The cover cracking would indicate the loss of the service life for the corrosion-affected structures. In the present paper, analytical models have been developed considering the residual strength of the cracked concrete and the stiffness provided by the combination of the reinforcement and expansive corrosion products. The problem is modeled as a boundary value problem and the governing equations are expressed in terms of the radial displacement. The analytical solutions are presented considering a simple 2-zone model for the cover concrete viz. cracked or uncracked. A sensitivity analysis has also been carried out to show the influence of the various parameters of the proposed models. The time to cover cracking is found to be function of initial material properties of the cover concrete and reinforcement plus corrosion products combine, type of rust products, rate of corrosion and the residual strength of the cover concrete. The calculated cracking times are correlated against the published experimental and analytical reference data.

Engineering properties of expansive soil treated with polypropylene fibers

  • Ali, Muhammad;Aziz, Mubashir;Hamza, Muhammad;Madni, Muhammad Faizan
    • Geomechanics and Engineering
    • /
    • v.22 no.3
    • /
    • pp.227-236
    • /
    • 2020
  • Expansive soils are renowned for their swelling-shrinkage property and these volumetric changes resultantly cause huge damage to civil infrastructures. Likewise, subgrades consisting of expansive soils instigate serviceability failures in pavements across various regions of Pakistan and worldwide. This study presents the use of polypropylene fibers to improve the engineering properties of a local swelling soil. The moisture-density relationship, unconfined compressive strength (UCS) and elastic modulus (E50), California bearing ratio (CBR) and one-dimensional consolidation behavior of the soil treated with 0, 0.2, 0.4, 0.6 and 0.8% fibers have been investigated in this study. It is found that the maximum dry density of reinforced soil slightly decreased by 2.8% due to replacement of heavier soil particles by light-weight fibers and the optimum moisture content remained almost unaffected due to non-absorbent nature of the fibers. A significant improvement has been observed in UCS (an increase of 279%), E50 (an increase of 113.6%) and CBR value (an increase of 94.4% under unsoaked and an increase of 55.6% under soaked conditions) of the soil reinforced with 0.4% fibers, thereby providing a better quality subgrade for the construction of pavements on such soils. Free swell and swell pressure of the soil also significantly reduced (94.4% and 87.9%, respectively) with the addition of 0.8% fibers and eventually converting the medium swelling soil to a low swelling class. Similarly, the compression and rebound indices also reduced by 69.9% and 88%, respectively with fiber inclusion of 0.8%. From the experimental evaluations, it emerges that polypropylene fiber has great potential as a low cost and sustainable stabilizing material for widespread swelling soils.

Cracking Behavior of Reinforced Concrete Structures due th Reinforcing Steel Corrosion (철근부식에 의한 철근콘크리트 구조물의 균열거동)

  • 오병환;김기현;장승엽;강의영;장봉석
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.851-863
    • /
    • 2002
  • Corrosion products of reinforcement in concrete induce pressure to the adjacent concrete due to the expansion of steel. This expansion causes tensile stresses around the reinforcing bar and eventually induces cracking through the concrete cover The cracking of concrete cover will adversely affect the safety as well as the service life of concrete structures. The purpose of the this study is to examine the critical corrosion amount which causes the cracking of concrete cover. To this end, a comprehensive experimental and theoretical study has been conducted. Major test variables include concrete strength and cover thickness. The strains at the surface of concrete cover have been measured according to the amount of steel corrosion. The corrosion products which penetrate into the pores and cracks around the steel bar have been considered in the calculation of expansive pressure due to steel corrosion. The present study indicates that the critical amount of corrosion, which causes the initiation of cracking, increases with an increase of compressive strength. A realistic relation between the expansive pressure and average strain of corrosion product layer in the corrosion region has been derived and the representative stiffness of corrosion layer was determined. A concept of pressure-free strain of corrosion product layer was introduced to explain the relation between the expansive pressure and corrosion strain. The proposed theory agrees well with experimental data and may be a good base for the realistic durability design of concrete structures.

Effect of Mineral Admixture on Bond between Structural Synthetic Fiber and Latex Modified Cement Mortar under Sulfate Environments (황산염에 노출된 구조용 합성섬유와 라텍스 개질 시멘트 모르타르의 부착특성에 미치는 광물질 혼화재의 효과)

  • Kim, Dong-Hyun;Lee, Jung-Woo;Park, Chan-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.5
    • /
    • pp.25-34
    • /
    • 2012
  • It has been well known that concrete structures exposed to acid and sulfate environments such as sewer etc. show significant decrease in their durability due to chemical attack. Such deleterious acid and sulfate attacks lead to expansion and cracking in concrete, and thus, eventually result in damage to cement mortar by forming expansive hydration products due to the reaction between cement hydration products and acid and sulfate ions. In this study, the effect of fly ash and blast furnace slag on the bond performances of structural synthetic fiber in latex modified cement mortar under sulfate environments. Fly ash and blast furnace slag contents ranging from 0 % to 20 % are used in the mix proportions. The latex modified cement mortar specimens were immersed in fresh water, 8 % sodium sulfate ($Na_2SO_4$) solutions for 28 and 50 days, respectively. Pullout tests are conducted to measure the bond performance of structural synthetic fiber from latex modified cement mortar after sulfate environments exposure. Test results are found that the incorporation of fly ash and blast furnace slag can effectively enhance the PVA fiber-latex modified cement mortar interfacial bond properties (bond behavior, bond strength and interface toughness) after sulfate environments exposure. The microstructural observation confirms the findings on the interface bond mechanism drawn from the fiber pullout test results under sulfate environments.

A Comparative Study of Textuality in Korean-Thai Female Poems -Feminism Point of View- (한·태 여성시의 텍스트성 비교 -페미니즘적 관점에서-)

  • Lim, Myung Sook
    • The Southeast Asian review
    • /
    • v.21 no.2
    • /
    • pp.263-291
    • /
    • 2011
  • The purpose of this study is to see and compare the contemporary Korean-Thai female poems from a feminine standpoint to newly clarify the textuality of their poems. The textuality defined in this manuscript is the text of Korean-Thai contemporary female poems. To newly clarify the textuality of their poems are to go against the existing discussion method and to newly read out the text as re-vision method. This discussion is to analyse deeply how the central exis composing a text which is the identity of woman in a body, appearance of uttrance, or action of abjection is exposed in gender space and to identify the poem's textuality. In other words, through in-depth analysis of the text of poems, which are very complicated as a skein of yarn, place a high value of Korean-Thai female poems. Transcending time, nations and races, if the text of female poem would not free from a biased male-dominated thinking or make a mystery of female poem textuality without critics or tend to be stereotype the text of poem as pathos of female, it would not get out from man-centered reading. To escape from the state of sexual discrimination, the new reading method was seriously analysed and found out that the female text poems not only implicate sexual discrimination but also link to expansive cultural and social structure. And for that reason, this study raise a question to male-dominant sexual discriminated norm. It is very significant that through this elaborate and in-depth text poem analysis, a creation process of female poem is traced. Eventually, the comparative study on Korean-Thai female poems is meaningful and worthy in regard to the contribution to promotion of cultural exchange between korea-Thai two nations and furthermore extend to East Asia to make a basement for the vitalization of Asia comparative literature.

Resistance of Chloride Penetration into High Strength Concrete Containing Mineral Admixtures according to Curing Conditions (광물질혼화재 혼합 고강도콘크리트의 양생조건에 따른 염화물이온 침투저항성)

  • Moon, Han-Young;Kim, Byoung-Kwon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.185-194
    • /
    • 2004
  • In recent years, construction company makes inroads into the world construction market, and receives the order of extra-large concrete structure under marine environment in south-east asia specially. At this point of time, to enhance the quality of concrete, we research the High Strength Concrete (HSC) containing mineral admixtures. In this study, therefore, HSC with various combination of ordinary portland cement(OPC), blast-furnace slag(SG), silica fume(SF), and expansion admixture(SS) are cured 23 and $35^{\circ}C$ considering the site weather, and are cured in water for 3, 7 or 56 days respectively. Test results show that the HSC cured at $35^{\circ}C$ gains higher early-age strength but eventually gains lower later-age strength compare with the HSC cured at $23^{\circ}C$. Especially, HSC with combination of OPC+SG+SF+SS or OPC+SG+SF show very excellent resistance of chloride penetration. The permeability of HSC was therefore enhanced as because of containing the proper content of SG, SF, and SS and making dense micro-structure of HSC.

Influence of Mineral Admixtures on the Resistance to Sulfuric Acid and Sulfate Attack in Concrete (콘크리트의 황산 및 황산염 침투 저항성에 미치는 광물질 혼화재의 영향)

  • Bae, Su-Ho;Park, Jae-Im;Lee, Kwang-Myong
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.219-228
    • /
    • 2010
  • It has been well known that concrete structures exposed to acid and sulfate environments such as sewer, sewage and wastewater, soil, groundwater, and seawater etc. show significant decrease in their durability due to chemical attack. Such deleterious acid and sulfate attacks lead to expansion and cracking in concrete, and thus, eventually result in damage to concrete matrix by forming expansive hydration products due to the reaction between portland cement hydration products and acid and sulfate ions. Objectives of this experimental research are to investigate the effect of mineral admixtures on the resistance to acid and sulfate attack in concrete and to suggest high-resistance concrete mix against acid and sulfate attack. For this purpose, concretes specimens with three types of cement (ordinary portland cement (OPC), binary blended cement (BBC), and ternary blended cement (TBC) composed of different types and proportions of admixtures) were prepared at water-biner ratios of 32% and 43%. The concrete specimens were immersed in fresh water, 5% sulfuric acid, 10% sodium sulfate, and 10% magnesium sulfate solutions for 28, 56, 91, 182, and 365 days, respectively. To evaluate the resistance to acid and sulfate for concrete specimens, visual appearance changes were observed and compressive strength ratios and mass change ratios were measured. It was observed from the test results that the resistance against sulfuric acid and sodium sulfate solutions of the concretes containing mineral admixtures were much better than that of OPC concrete, but in the case of magnesium sulfate solution the concretes containing mineral admixtures was less resistant than OPC concrete due to formation of magnesium silicate hydrate (M-S-H) which is non-cementitious.

The Effect of Productive Activities on Future Time Perspective in Later Life: A Mediating Role of Life Satisfaction (노년기 생산적 활동과 미래시간조망 간의 관계: 삶의 만족감의 매개효과)

  • Bae, Suhyun;Kim, Giyeon
    • 한국노년학
    • /
    • v.41 no.1
    • /
    • pp.49-68
    • /
    • 2021
  • The present study aims to examine the mediating role of life satisfaction in the relationship between productive activities and future time perspective in later life. Drawn from the 7th wave of the Korea Longitudinal Study of Aging, our sample consists of a total of 6,756 older adults aged 55 and over. Complex samples analyses were conducted the relationship between productive activities, life satisfaction and future time perspective measured in two dimensions (i. e., life expectancy and job expectation). Results from complex samples analysis showed that productive activities were associated with life satisfaction and future time perspective. Employed older adults including unpaid family workers tended to have higher levels of life satisfaction and future time perspective (i.e., life expectancy and job expectation) than their counterparts. The relationship between productive activities and future time perspective was mediated by life satisfaction. Findings suggest that engaging in productive activities influences better satisfaction with life among older adults, which is eventually linked to an expansive view of the future. Policy implications were discussed that promoting productive activities in later life and age-friendly working environment should be encouraged.