• 제목/요약/키워드: event prediction

검색결과 328건 처리시간 0.027초

A Deep Space Orbit Determination Software: Overview and Event Prediction Capability

  • Kim, Youngkwang;Park, Sang-Young;Lee, Eunji;Kim, Minsik
    • Journal of Astronomy and Space Sciences
    • /
    • 제34권2호
    • /
    • pp.139-151
    • /
    • 2017
  • This paper presents an overview of deep space orbit determination software (DSODS), as well as validation and verification results on its event prediction capabilities. DSODS was developed in the MATLAB object-oriented programming environment to support the Korea Pathfinder Lunar Orbiter (KPLO) mission. DSODS has three major capabilities: celestial event prediction for spacecraft, orbit determination with deep space network (DSN) tracking data, and DSN tracking data simulation. To achieve its functionality requirements, DSODS consists of four modules: orbit propagation (OP), event prediction (EP), data simulation (DS), and orbit determination (OD) modules. This paper explains the highest-level data flows between modules in event prediction, orbit determination, and tracking data simulation processes. Furthermore, to address the event prediction capability of DSODS, this paper introduces OP and EP modules. The role of the OP module is to handle time and coordinate system conversions, to propagate spacecraft trajectories, and to handle the ephemerides of spacecraft and celestial bodies. Currently, the OP module utilizes the General Mission Analysis Tool (GMAT) as a third-party software component for high-fidelity deep space propagation, as well as time and coordinate system conversions. The role of the EP module is to predict celestial events, including eclipses, and ground station visibilities, and this paper presents the functionality requirements of the EP module. The validation and verification results show that, for most cases, event prediction errors were less than 10 millisec when compared with flight proven mission analysis tools such as GMAT and Systems Tool Kit (STK). Thus, we conclude that DSODS is capable of predicting events for the KPLO in real mission applications.

새로운 예측기반 병렬 이벤트구동 로직 시뮬레이션 (A New Prediction-Based Parallel Event-Driven Logic Simulation)

  • 양세양
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제4권3호
    • /
    • pp.85-90
    • /
    • 2015
  • 본 논문에서는 새로운 병렬 이벤트구동 로직 시뮬레이션 기법을 제안한다. 제안한 예측에 기반한 병렬 이벤트구동 시뮬레이션 기법은 병렬 이벤트구동 시뮬레이션에서 다른 로컬시뮬레이션과의 연동 과정에서 사용되는 입력값과 출력값에 실제값과 예측값을 함께 사용함으로써 성능 향상의 제약 요소인 동기 오버헤드 및 통신 오버헤드를 크게 감소시킬 수 있다. 본 논문에서 제안한 예측기반 병렬 이벤트구동 로직 시뮬레이션의 유용함은 다수의 디자인들에 적용한 실험을 통하여 확인할 수 있었다.

A Comparative Study on Prediction Performance of the Bankruptcy Prediction Models for General Contractors in Korea Construction Industry

  • Seung-Kyu Yoo;Jae-Kyu Choi;Ju-Hyung Kim;Jae-Jun Kim
    • 국제학술발표논문집
    • /
    • The 4th International Conference on Construction Engineering and Project Management Organized by the University of New South Wales
    • /
    • pp.432-438
    • /
    • 2011
  • The purpose of the present thesis is to develop bankruptcy prediction models capable of being applied to the Korean construction industry and to deduce an optimal model through comparative evaluation of final developed models. A study population was selected as general contractors in the Korean construction industry. In order to ease the sample securing and reliability of data, it was limited to general contractors receiving external audit from the government. The study samples are divided into a bankrupt company group and a non-bankrupt company group. The bankruptcy, insolvency, declaration of insolvency, workout and corporate reorganization were used as selection criteria of a bankrupt company. A company that is not included in the selection criteria of the bankrupt company group was selected as a non-bankrupt company. Accordingly, the study sample is composed of a total of 112 samples and is composed of 48 bankrupt companies and 64 non-bankrupt companies. A financial ratio was used as early predictors for development of an estimation model. A total of 90 financial ratios were used and were divided into growth, profitability, productivity and added value. The MDA (Multivariate Discriminant Analysis) model and BLRA (Binary Logistic Regression Analysis) model were used for development of bankruptcy prediction models. The MDA model is an analysis method often used in the past bankruptcy prediction literature, and the BLRA is an analysis method capable of avoiding equal variance assumption. The stepwise (MDA) and forward stepwise method (BLRA) were used for selection of predictor variables in case of model construction. Twenty two variables were finally used in MDA and BLRA models according to timing of bankruptcy. The ROC-Curve Analysis and Classification Analysis were used for analysis of prediction performance of estimation models. The correct classification rate of an individual bankruptcy prediction model is as follows: 1) one year ago before the event of bankruptcy (MDA: 83.04%, BLRA: 93.75%); 2) two years ago before the event of bankruptcy (MDA: 77.68%, BLRA: 78.57%); 3) 3 years ago before the event of bankruptcy (MDA: 84.82%, BLRA: 91.96%). The AUC (Area Under Curve) of an individual bankruptcy prediction model is as follows. : 1) one year ago before the event of bankruptcy (MDA: 0.933, BLRA: 0.978); 2) two years ago before the event of bankruptcy (MDA: 0.852, BLRA: 0.875); 3) 3 years ago before the event of bankruptcy (MDA: 0.938, BLRA: 0.975). As a result of the present research, accuracy of the BLRA model is higher than the MDA model and its prediction performance is improved.

  • PDF

Prediction of EPB tunnelling performance for various grounds in Korea using discrete event simulation

  • Young Jin Shin;Jae Won Lee;Juhyi Yim;Han Byul Kang;Jae Hoon Jung;Jun Kyung Park
    • Geomechanics and Engineering
    • /
    • 제38권5호
    • /
    • pp.467-476
    • /
    • 2024
  • This study investigates Tunnel Boring Machine (TBM) performance prediction by employing discrete event simulation technique, which is a potential remedy highlighting its stochastic adaptability to the complex nature of TBM tunnelling activities. The new discrete event simulation model using AnyLogic software was developed and validated by comparing its results with actual performance data for Daegok-Sosa railway project that Earth Pressure Balance (EPB) TBM machine was used in Korea. The results showed the successful implementation of predicting TBM performance. However, it necessitates high-quality database establishment including geological formations, machine specifications, and operation settings. Additionally, this paper introduces a novel methodology for daily performance updates during construction, using automated data processing techniques. This approach enables daily updates and predictions for the ongoing projects, offering valuable insights for construction management. Overall, this study underlines the potential of discrete event simulation in predicting TBM performance, its applicability to other tunneling projects, and the importance of continual database expansion for future model enhancements.

Review of Statistical Methods for Evaluating the Performance of Survival or Other Time-to-Event Prediction Models (from Conventional to Deep Learning Approaches)

  • Seo Young Park;Ji Eun Park;Hyungjin Kim;Seong Ho Park
    • Korean Journal of Radiology
    • /
    • 제22권10호
    • /
    • pp.1697-1707
    • /
    • 2021
  • The recent introduction of various high-dimensional modeling methods, such as radiomics and deep learning, has created a much greater diversity in modeling approaches for survival prediction (or, more generally, time-to-event prediction). The newness of the recent modeling approaches and unfamiliarity with the model outputs may confuse some researchers and practitioners about the evaluation of the performance of such models. Methodological literacy to critically appraise the performance evaluation of the models and, ideally, the ability to conduct such an evaluation would be needed for those who want to develop models or apply them in practice. This article intends to provide intuitive, conceptual, and practical explanations of the statistical methods for evaluating the performance of survival prediction models with minimal usage of mathematical descriptions. It covers from conventional to deep learning methods, and emphasis has been placed on recent modeling approaches. This review article includes straightforward explanations of C indices (Harrell's C index, etc.), time-dependent receiver operating characteristic curve analysis, calibration plot, other methods for evaluating the calibration performance, and Brier score.

웨어러블 센서를 이용한 사건인지 기반 일상 활동 예측 (Event Cognition-based Daily Activity Prediction Using Wearable Sensors)

  • 이충연;곽동현;이범진;장병탁
    • 정보과학회 논문지
    • /
    • 제43권7호
    • /
    • pp.781-785
    • /
    • 2016
  • 실제 환경에서 사람의 일상적인 활동을 학습하는 기술은 스마트 비서나 자율지능 로봇과 같은 인지 지능 시스템 개발을 위해 필요한 핵심 기술이다. 일상을 예측하는 대다수의 연구들은 센서 데이터의 패턴과 일상 활동 사이의 직접적인 상관관계를 탐색하는 것에 집중하였다. 하지만 일상에서의 인간 활동은 하나의 레이블로 표현하기 어려운 다수의 사건 집합이고 또한 서술 가능한 특성을 지니고 있다. 본고에서는 일상을 구성하는 사건 요소들을 우선 인식하고, 이후 일상 활동을 학습 및 예측하는 방법을 제안한다. 제안하는 방법은 개인의 일상에서 웨어러블 장치와 스마트폰으로부터 수집된 일인칭 시점의 멀티 센서 데이터로부터 위치 좌표, 장면 영상, 그리고 신체적 움직임에 기인한 사건 요소들을 각각 인식한 뒤, 이 정보들이 특정 활동 내역에 따라 조합되는 규칙을 학습하여 최종적으로 사용자의 일상 활동을 예측한다. 두 명의 실험 참가자가 각각 2주간 수집한 센서 데이터를 이용하여 실험한 결과는 제안한 방법이 센서 데이터로부터 추출된 특징을 일차적으로 사용하여 분류하는 기존의 방법과 비교하여 향상된 성능을 보였다.

공간적 부분시뮬레이션 전략이 적용된 예측기반 병렬 게이트수준 타이밍 시뮬레이션 (Prediction-Based Parallel Gate-Level Timing Simulation Using Spatially Partial Simulation Strategy)

  • 한재훈;양세양
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제8권3호
    • /
    • pp.57-64
    • /
    • 2019
  • 본 논문에서는 이벤트구동 게이트수준 타이밍 시뮬레이션의 성능 향상 및 디버깅 효율성 크게 높일 수 있는 공간적 부분시뮬레이션 전략이 적용된 효율적인 예측기반 병렬 시뮬레이션 기법을 제안한다. 제안된 기법은 병렬 이벤트구동 로컬시뮬레이션들의 입력값과 출력값에 대한 빠르면서도 정확한 예측을 달성하기 위해서, 공간적 부분시뮬레이션 전략을 추상화 상위수준 시뮬레이션에 적용하여 정확한 예측 데이터를 빠르고 즉각적으로 생성해낸다. 공간적 부분시뮬레이션 전략이 적용된 예측기반 병렬 게이트수준 타이밍 시뮬레이션은 성능 평가를 위하여 사용된 6개의 벤치마크 설계들에 대하여 제일 일반적인 순차 이벤트구동 게이트수준 타이밍 시뮬레이션에 비하여 평균 약 3.7배, 상용화된 멀티코어 기반의 병렬 이벤트구동 게이트수준 타이밍 시뮬레이션에 비해서는 평균 9.7배, 그리고 기존의 가장 우수한 예측기반 병렬 이벤트구동 게이트 수준 타이밍 시뮬레이션 결과에 비해서도 평균 2.7배의 시뮬레이션 성능이 향상됨을 확인할 수 있었다.

간헐적 동기화를 통한 예측기반 병렬 로직 시뮬레이션에서의 체크포인트/재실행 오버헤드 최소화 (Checkpoint/Resimulation Overhead Minimization with Sporadic Synchronization in Prediction-Based Parallel Logic Simulation)

  • 곽두환;양세양
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제4권5호
    • /
    • pp.147-152
    • /
    • 2015
  • 일반적으로 병렬 이벤트구동 시뮬레이션의 대표적 동기화 방법으로는 비관적 동기화 방식과 낙관적 동기화 방식이 있는데, 본 논문에서는 예측기반 병렬 이벤트구동 로직 시뮬레이션에서 이 두 가지 동기화 방식들을 혼용한 간헐적 동기화를 통한 시뮬레이션 성능 향상 기법을 제시한다. 제안되는 간헐적 동기화 방식은 예측기반 병렬 이벤트구동 로직 시뮬레이션에서 자주 일어나는 틀린 예측과 연관된 체크포인트 오버헤드 및 재실행 오버헤드를 최소화할 수 있어 시뮬레이션 성능 향상에 매우 효과적인데, 이를 다양한 실제 디자인들에 적용한 실험을 통하여 확인할 수 있었다.

AnnAGNPS 모형을 이용한 관목림지의 비점오염 모의 (Non-point Source Pollution Modeling Using AnnAGNPS Model for a Bushland Catchment)

  • 최경숙
    • 한국농공학회논문집
    • /
    • 제47권4호
    • /
    • pp.65-74
    • /
    • 2005
  • AnnAGNPS model was applied to a catchment mainly occupied with bushland for modeling non-point source pollution. Since the single event model cannot handle events longer than 24 hours duration, the event-based calibration was carried out using the continuous mode. As event flows affect sediment and nutrient generation and transport, the calibration of the model was performed in three steps: Hydrologic, Sediment and Nutrient calibrations. The results from hydrologic calibration for the catchment indicate a good prediction of the model with average ARE(Absolute Relative Error) of $24.6\%$ fur the runoff volume and $12\%$ for the peak flow. For the sediment calibration, the average ARE was $198.8\%$ indicating acceptable model performance for the sediment prediction. The predicted TN(Total Nitrogen) and TP(Total Phosphorus) were also found to be acceptable as the average ARE for TN and TP were $175.5\%\;and\;126.5\%$, respectively. The AnnAGNPS model was therefore approved to be appropriate to model non-point source pollution in bushland catchments. In general, the model was likely to result in underestimation for the larger events and overestimation fur the smaller events for the water quality predictions. It was also observed that the large errors in the hydrologic prediction also produced high errors in sediment and nutrient prediction. This was probably due to error propagation in which the error in the hydrologic prediction influenced the generation of error in the water quality prediction. Accurate hydrologic calibration should be hence obtained for a reliable water quality prediction.

Identifying Temporal Pattern Clusters to Predict Events in Time Series

  • Heesoo Hwang
    • KIEE International Transaction on Systems and Control
    • /
    • 제2D권2호
    • /
    • pp.125-134
    • /
    • 2002
  • This paper proposes a method for identifying temporal pattern clusters to predict events in time series. Instead of predicting future values of the time series, the proposed method forecasts specific events that may be arbitrarily defined by the user. The prediction is defined by an event characterization function, which is the target of prediction. The events are predicted when the time series belong to temporal pattern clusters. To identify the optimal temporal pattern clusters, fuzzy goal programming is formulated to combine multiple objectives and solved by an adaptive differential evolution technique that can overcome the sensitivity problem of control parameters in conventional differential evolution. To evaluate the prediction method, five test examples are considered. The adaptive differential evolution is also tested for twelve optimization problems.

  • PDF