• 제목/요약/키워드: event prediction

Search Result 328, Processing Time 0.03 seconds

A Deep Space Orbit Determination Software: Overview and Event Prediction Capability

  • Kim, Youngkwang;Park, Sang-Young;Lee, Eunji;Kim, Minsik
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.139-151
    • /
    • 2017
  • This paper presents an overview of deep space orbit determination software (DSODS), as well as validation and verification results on its event prediction capabilities. DSODS was developed in the MATLAB object-oriented programming environment to support the Korea Pathfinder Lunar Orbiter (KPLO) mission. DSODS has three major capabilities: celestial event prediction for spacecraft, orbit determination with deep space network (DSN) tracking data, and DSN tracking data simulation. To achieve its functionality requirements, DSODS consists of four modules: orbit propagation (OP), event prediction (EP), data simulation (DS), and orbit determination (OD) modules. This paper explains the highest-level data flows between modules in event prediction, orbit determination, and tracking data simulation processes. Furthermore, to address the event prediction capability of DSODS, this paper introduces OP and EP modules. The role of the OP module is to handle time and coordinate system conversions, to propagate spacecraft trajectories, and to handle the ephemerides of spacecraft and celestial bodies. Currently, the OP module utilizes the General Mission Analysis Tool (GMAT) as a third-party software component for high-fidelity deep space propagation, as well as time and coordinate system conversions. The role of the EP module is to predict celestial events, including eclipses, and ground station visibilities, and this paper presents the functionality requirements of the EP module. The validation and verification results show that, for most cases, event prediction errors were less than 10 millisec when compared with flight proven mission analysis tools such as GMAT and Systems Tool Kit (STK). Thus, we conclude that DSODS is capable of predicting events for the KPLO in real mission applications.

A New Prediction-Based Parallel Event-Driven Logic Simulation (새로운 예측기반 병렬 이벤트구동 로직 시뮬레이션)

  • Yang, Seiyang
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.3
    • /
    • pp.85-90
    • /
    • 2015
  • In this paper, anew parallel event-driven logic simulation is proposed. As the proposed prediction-based parallel event-driven simulation method uses both prediction data and actual data for the input and output values of local simulations executed in parallel, the synchronization overhead and the communication overhead, the major bottleneck of the performance improvement, are greatly reduced. Through the experimentation with multiple designs, we have observed the effectiveness of the proposed approach.

A Comparative Study on Prediction Performance of the Bankruptcy Prediction Models for General Contractors in Korea Construction Industry

  • Seung-Kyu Yoo;Jae-Kyu Choi;Ju-Hyung Kim;Jae-Jun Kim
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.432-438
    • /
    • 2011
  • The purpose of the present thesis is to develop bankruptcy prediction models capable of being applied to the Korean construction industry and to deduce an optimal model through comparative evaluation of final developed models. A study population was selected as general contractors in the Korean construction industry. In order to ease the sample securing and reliability of data, it was limited to general contractors receiving external audit from the government. The study samples are divided into a bankrupt company group and a non-bankrupt company group. The bankruptcy, insolvency, declaration of insolvency, workout and corporate reorganization were used as selection criteria of a bankrupt company. A company that is not included in the selection criteria of the bankrupt company group was selected as a non-bankrupt company. Accordingly, the study sample is composed of a total of 112 samples and is composed of 48 bankrupt companies and 64 non-bankrupt companies. A financial ratio was used as early predictors for development of an estimation model. A total of 90 financial ratios were used and were divided into growth, profitability, productivity and added value. The MDA (Multivariate Discriminant Analysis) model and BLRA (Binary Logistic Regression Analysis) model were used for development of bankruptcy prediction models. The MDA model is an analysis method often used in the past bankruptcy prediction literature, and the BLRA is an analysis method capable of avoiding equal variance assumption. The stepwise (MDA) and forward stepwise method (BLRA) were used for selection of predictor variables in case of model construction. Twenty two variables were finally used in MDA and BLRA models according to timing of bankruptcy. The ROC-Curve Analysis and Classification Analysis were used for analysis of prediction performance of estimation models. The correct classification rate of an individual bankruptcy prediction model is as follows: 1) one year ago before the event of bankruptcy (MDA: 83.04%, BLRA: 93.75%); 2) two years ago before the event of bankruptcy (MDA: 77.68%, BLRA: 78.57%); 3) 3 years ago before the event of bankruptcy (MDA: 84.82%, BLRA: 91.96%). The AUC (Area Under Curve) of an individual bankruptcy prediction model is as follows. : 1) one year ago before the event of bankruptcy (MDA: 0.933, BLRA: 0.978); 2) two years ago before the event of bankruptcy (MDA: 0.852, BLRA: 0.875); 3) 3 years ago before the event of bankruptcy (MDA: 0.938, BLRA: 0.975). As a result of the present research, accuracy of the BLRA model is higher than the MDA model and its prediction performance is improved.

  • PDF

Prediction of EPB tunnelling performance for various grounds in Korea using discrete event simulation

  • Young Jin Shin;Jae Won Lee;Juhyi Yim;Han Byul Kang;Jae Hoon Jung;Jun Kyung Park
    • Geomechanics and Engineering
    • /
    • v.38 no.5
    • /
    • pp.467-476
    • /
    • 2024
  • This study investigates Tunnel Boring Machine (TBM) performance prediction by employing discrete event simulation technique, which is a potential remedy highlighting its stochastic adaptability to the complex nature of TBM tunnelling activities. The new discrete event simulation model using AnyLogic software was developed and validated by comparing its results with actual performance data for Daegok-Sosa railway project that Earth Pressure Balance (EPB) TBM machine was used in Korea. The results showed the successful implementation of predicting TBM performance. However, it necessitates high-quality database establishment including geological formations, machine specifications, and operation settings. Additionally, this paper introduces a novel methodology for daily performance updates during construction, using automated data processing techniques. This approach enables daily updates and predictions for the ongoing projects, offering valuable insights for construction management. Overall, this study underlines the potential of discrete event simulation in predicting TBM performance, its applicability to other tunneling projects, and the importance of continual database expansion for future model enhancements.

Review of Statistical Methods for Evaluating the Performance of Survival or Other Time-to-Event Prediction Models (from Conventional to Deep Learning Approaches)

  • Seo Young Park;Ji Eun Park;Hyungjin Kim;Seong Ho Park
    • Korean Journal of Radiology
    • /
    • v.22 no.10
    • /
    • pp.1697-1707
    • /
    • 2021
  • The recent introduction of various high-dimensional modeling methods, such as radiomics and deep learning, has created a much greater diversity in modeling approaches for survival prediction (or, more generally, time-to-event prediction). The newness of the recent modeling approaches and unfamiliarity with the model outputs may confuse some researchers and practitioners about the evaluation of the performance of such models. Methodological literacy to critically appraise the performance evaluation of the models and, ideally, the ability to conduct such an evaluation would be needed for those who want to develop models or apply them in practice. This article intends to provide intuitive, conceptual, and practical explanations of the statistical methods for evaluating the performance of survival prediction models with minimal usage of mathematical descriptions. It covers from conventional to deep learning methods, and emphasis has been placed on recent modeling approaches. This review article includes straightforward explanations of C indices (Harrell's C index, etc.), time-dependent receiver operating characteristic curve analysis, calibration plot, other methods for evaluating the calibration performance, and Brier score.

Event Cognition-based Daily Activity Prediction Using Wearable Sensors (웨어러블 센서를 이용한 사건인지 기반 일상 활동 예측)

  • Lee, Chung-Yeon;Kwak, Dong Hyun;Lee, Beom-Jin;Zhang, Byoung-Tak
    • Journal of KIISE
    • /
    • v.43 no.7
    • /
    • pp.781-785
    • /
    • 2016
  • Learning from human behaviors in the real world is essential for human-aware intelligent systems such as smart assistants and autonomous robots. Most of research focuses on correlations between sensory patterns and a label for each activity. However, human activity is a combination of several event contexts and is a narrative story in and of itself. We propose a novel approach of human activity prediction based on event cognition. Egocentric multi-sensor data are collected from an individual's daily life by using a wearable device and smartphone. Event contexts about location, scene and activities are then recognized, and finally the users" daily activities are predicted from a decision rule based on the event contexts. The proposed method has been evaluated on a wearable sensor data collected from the real world over 2 weeks by 2 people. Experimental results showed improved recognition accuracies when using the proposed method comparing to results directly using sensory features.

Prediction-Based Parallel Gate-Level Timing Simulation Using Spatially Partial Simulation Strategy (공간적 부분시뮬레이션 전략이 적용된 예측기반 병렬 게이트수준 타이밍 시뮬레이션)

  • Han, Jaehoon;Yang, Seiyang
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.3
    • /
    • pp.57-64
    • /
    • 2019
  • In this paper, an efficient prediction-based parallel simulation method using spatially partial simulation strategy is proposed for improving both the performance of the event-driven gate-level timing simulation and the debugging efficiency. The proposed method quickly generates the prediction data on-the-fly, but still accurately for the input values and output values of parallel event-driven local simulations by applying the strategy to the simulation at the higher abstraction level. For those six designs which had used for the performance evaluation of the proposed strategy, our method had shown about 3.7x improvement over the most general sequential event-driven gate-level timing simulation, 9.7x improvement over the commercial multi-core based parallel event-driven gate-level timing simulation, and 2.7x improvement over the best of previous prediction-based parallel simulation results, on average.

Checkpoint/Resimulation Overhead Minimization with Sporadic Synchronization in Prediction-Based Parallel Logic Simulation (간헐적 동기화를 통한 예측기반 병렬 로직 시뮬레이션에서의 체크포인트/재실행 오버헤드 최소화)

  • Kwak, Doohwan;Yang, Seiyang
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.5
    • /
    • pp.147-152
    • /
    • 2015
  • In general, there are two synchronization methods in parallel event-driven simulation, pessimistic approach and optimistic approach. In this paper, we propose a new approach, sporadic synchronization combining both for prediction-based parallel event-driven logic simulation. We claim this hybrid solution is pretty effective to minimize both checkpoint overhead and restart overhead, which are related problems with frequent false predictions for improving the performance of the prediction-based parallel event-driven logic simulation. The experiment has clearly shown the advantage of the proposed approach.

Non-point Source Pollution Modeling Using AnnAGNPS Model for a Bushland Catchment (AnnAGNPS 모형을 이용한 관목림지의 비점오염 모의)

  • Choi Kyung-Sook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.4
    • /
    • pp.65-74
    • /
    • 2005
  • AnnAGNPS model was applied to a catchment mainly occupied with bushland for modeling non-point source pollution. Since the single event model cannot handle events longer than 24 hours duration, the event-based calibration was carried out using the continuous mode. As event flows affect sediment and nutrient generation and transport, the calibration of the model was performed in three steps: Hydrologic, Sediment and Nutrient calibrations. The results from hydrologic calibration for the catchment indicate a good prediction of the model with average ARE(Absolute Relative Error) of $24.6\%$ fur the runoff volume and $12\%$ for the peak flow. For the sediment calibration, the average ARE was $198.8\%$ indicating acceptable model performance for the sediment prediction. The predicted TN(Total Nitrogen) and TP(Total Phosphorus) were also found to be acceptable as the average ARE for TN and TP were $175.5\%\;and\;126.5\%$, respectively. The AnnAGNPS model was therefore approved to be appropriate to model non-point source pollution in bushland catchments. In general, the model was likely to result in underestimation for the larger events and overestimation fur the smaller events for the water quality predictions. It was also observed that the large errors in the hydrologic prediction also produced high errors in sediment and nutrient prediction. This was probably due to error propagation in which the error in the hydrologic prediction influenced the generation of error in the water quality prediction. Accurate hydrologic calibration should be hence obtained for a reliable water quality prediction.

Identifying Temporal Pattern Clusters to Predict Events in Time Series

  • Heesoo Hwang
    • KIEE International Transaction on Systems and Control
    • /
    • v.2D no.2
    • /
    • pp.125-134
    • /
    • 2002
  • This paper proposes a method for identifying temporal pattern clusters to predict events in time series. Instead of predicting future values of the time series, the proposed method forecasts specific events that may be arbitrarily defined by the user. The prediction is defined by an event characterization function, which is the target of prediction. The events are predicted when the time series belong to temporal pattern clusters. To identify the optimal temporal pattern clusters, fuzzy goal programming is formulated to combine multiple objectives and solved by an adaptive differential evolution technique that can overcome the sensitivity problem of control parameters in conventional differential evolution. To evaluate the prediction method, five test examples are considered. The adaptive differential evolution is also tested for twelve optimization problems.

  • PDF