• Title/Summary/Keyword: even-order

Search Result 5,714, Processing Time 0.03 seconds

The Magic Square Algorithm (마방진 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.3
    • /
    • pp.159-166
    • /
    • 2017
  • This paper proposes an algorithm for odd, doubly even, and singly even magic squares. In constructing an odd magic square, de la $Loub{\grave{e}}re^{\prime}s$ method is widely known and used, but it has an inherent defect of executing $O(n^2)$ steps. 2 types of cross algorithms have been proposed to the double even magic square, and more to the singly even magic square based on the odd magic square of ${\frac{n}{2}}{\times}{\frac{n}{2}}$, the most popular and simple of which is one proposed by Strachey. The algorithm proposed in this paper successfully constructs odd and doubly even magic squares by undergoing 3 steps and 4 steps respectively. It also directly constructs a singly even magic square without having its basis on the odd magic square.

OSCILLATIONS FOR EVEN-ORDER NEUTRAL DIFFERENCE EQUATIONS

  • Zhou, Zhan;Yu, Jianshe;Lei, Guanglong
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.3
    • /
    • pp.833-842
    • /
    • 2000
  • Consider the even-order neutral difference equation (*) ${\delta}^m(x_n{-}p_ng(x_{n-k}))-q_nh(x_{n-1})=0$, n=0,1,2,... where $\Delta$ is the forward difference operator, m is even, ${-p_n},{q_n}$ are sequences of nonnegative real numbers, k, l are nonnegative integers, g(x), h(x) ${\in}$ C(R, R) with xg(x) > 0 for $x\;{\neq}\;0$. In this paper, we obtain some linearized oscillation theorems of (*) for $p_n\;{\in}\;(-{\infty},0)$ which are discrete results of the open problem by Gyori and Ladas.

A Study on the Modified Inverse Chebyshev Function to Realize the Passive Doubly-Terminated Ladder Network for the Even Order (우수 차수에서 수동 목종단 제자형 회로 실현이 가능한 변형된 inverse Chebyshev 함수에 관한 연구)

  • 최석우;윤창훈;김동용
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.5
    • /
    • pp.88-94
    • /
    • 1994
  • Inverse Chebyshev function can realize the same order of Chebyshev function nuder the same specification. In general, inverse Chebyshev function has the preferable characteristics in terms of the delay characteristics and the time-domain performances compare with Chebyshev function. However, for the even order n, inverse Chebyshev function does not realize in the doubly-terminated ladder network which has preferable sensitivity characteristics because of the finite value at ${\omega}={\infty}$. In this paper, the modified inverse Chebyshev function with $\mid$H($j^{\infty}$$\mid$=0 s proposed to realize the passive doubly-terminated ladder network for the n even or odd. The modified inverse Chebyshev function characteristics ars studied in the frequency and time domain, and then, realize the passive doubly-terminated ladder network.

  • PDF

High Impedance Fault Detection on 22.9kV Multigrounded Distribution System (22.9kV 이중접지 배전선로 고저항 지락 검출)

  • Park, Young-Moon;Lee, Ki-Won;Lim, Ju-Il;Yoon, Man-Chul;Yoo, Myeong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.463-468
    • /
    • 1987
  • In this paper, a high impedance fault detection on 22.9kV multigrounded distribution system that has been very difficult by any existing conventional protective relaying systems is studied. Because the fault current is very low, it cannot be distinguished from neutral current caused by load unvalanced on multigrounded distribution system. We developed the new and best algorithms of high impedance ground fault detection. This algorithms are 'the even order power method, even order ratio method', 'and even order ratio varience method'. Using this algorithms, a detection device for high impedance faults is constructed and tested in the laboratory. And continually, it is installed and has been tested in KEPCO substations.

  • PDF

Piecewise-Constant Method for Angular Approximation for the Second-Order Multidimensional Neutron Transport Equations (다차원 2계 중성자 수송방정식의 방향근사를 위한 영역상수법)

  • Noh, Tae-Wan
    • Journal of Energy Engineering
    • /
    • v.16 no.1 s.49
    • /
    • pp.46-52
    • /
    • 2007
  • The piecewise constant angular approximation is developed to replace the conventional angular quadrature sets in the solution of the second-order, multi-dimensional $S_{N}$ neutron transport equations. The newly generated quadrature sets by this method substantially mitigate ray effects and can be used in the same manner as the conventional quadrature sets are used. The discrete-ordinates and the piecewise-constant approximations are applied to both the first-order Boltzmann and the second-order form of neutron transport equations in treating angular variables. The result is that the mitigation of ray effects is only achieved by the piecewise-constant method, in which new angular quadratures are generated by integrating angle variables over the specified region. In other sense, the newly generated angular quadratures turn out to decrease the contribution of mixed-derivative terms in the even-parity equation that is one of the second-order neutron transport equation. This result can be interpreted as the entire elimination or substantial mitigation of ray effect are possible in the simplified even-parity equation which has no mixed-derivative terms.

Solution of the SAAF Neutron Transport Equation with the Diffusion Synthetic Acceleration (확산 가속법을 이용한 SAAF 중성자 수송 방정식의 해법)

  • Noh, Tae-Wan;Kim, Sung-Jin
    • Journal of Energy Engineering
    • /
    • v.17 no.4
    • /
    • pp.233-240
    • /
    • 2008
  • Conventionally, the second-order self-adjoint neutron transport equations have been studied using the even parity and the odd parity equations. Recently, however, the SAAF(self-adjoint angular flux) form of neutron transport equation has been introduced as a new option for the second-order self-adjoint equations. In this paper we validated the SAAF equation mathematically and clarified how it relates with the existing even and odd parity equations. We also developed a second-order SAAF differencing formula including DSA(diffusion synthetic acceleration) from the first-order difference equations. Numerical result is attached to show that the proposed methods increases accuracy with effective computational effort.

ADDITIVE SELF-DUAL CODES OVER FIELDS OF EVEN ORDER

  • Dougherty, Steven T.;Kim, Jon-Lark;Lee, Nari
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.341-357
    • /
    • 2018
  • We examine various dualities over the fields of even orders, giving new dualities for additive codes. We relate the MacWilliams relations and the duals of ${\mathbb{F}}_{2^{2s}}$ codes for these various dualities. We study self-dual codes with respect to these dualities and prove that any subgroup of order $2^s$ of the additive group is a self-dual code with respect to some duality.

Analysis of Power Amplifier Nonlinear Response Based on Practical Circuit Parameters (회로 특성 파라미터에 근거한 전력 증폭기의 비선형 응답 특성)

  • Park, Yong-Kuk;Kim, Hyeong-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.721-725
    • /
    • 2012
  • In this paper, a novel analysis on the nonlinear response of a power amplifier (PA) with the intermodulation distortion (IMD) asymmetry is proposed based on the mutislice behavioral model. The coefficients of the odd-order and even-order polynomial of that model are represented with the PA practical circuit parameters such as intercept points, gain and amplitudes of excitation inputs. We also develop the analytic expressions to distinguish baseband frequency effect from second harmonic effect on the IMD asymmetry. We also validate the derived analytic expressions through measurements.

A dynamical stochastic finite element method based on the moment equation approach for the analysis of linear and nonlinear uncertain structures

  • Falsone, Giovanni;Ferro, Gabriele
    • Structural Engineering and Mechanics
    • /
    • v.23 no.6
    • /
    • pp.599-613
    • /
    • 2006
  • A method for the dynamical analysis of FE discretized uncertain linear and nonlinear structures is presented. This method is based on the moment equation approach, for which the differential equations governing the response first and second-order statistical moments must be solved. It is shown that they require the cross-moments between the response and the random variables characterizing the structural uncertainties, whose governing equations determine an infinite hierarchy. As a consequence, a closure scheme must be applied even if the structure is linear. In this sense the proposed approach is approximated even for the linear system. For nonlinear systems the closure schemes are also necessary in order to treat the nonlinearities. The complete set of equations obtained by this procedure is shown to be linear if the structure is linear. The application of this procedure to some simple examples has shown its high level of accuracy, if compared with other classical approaches, such as the perturbation method, even for low levels of closures.