• Title/Summary/Keyword: evaluation and retrofit

Search Result 148, Processing Time 0.026 seconds

Retrofit of a hospital through strength reduction and enhanced damping

  • Viti, Stefania;Cimellaro, Gian Paolo;Reinhorn, Andrei M.
    • Smart Structures and Systems
    • /
    • v.2 no.4
    • /
    • pp.339-355
    • /
    • 2006
  • A procedure to retrofit existing essential facilities subjected to seismic excitation is proposed. The main features of this procedure are to reduce maximum acceleration and associated forces in buildings subjected to seismic excitation by reducing their strength (weakening). The weakening retrofit, which is an opposite strategy to strengthening, is particularly suitable for buildings having overstressed components and foundation supports or having weak brittle components. However, by weakening the structure large deformations are expected. Supplementaldamping devices however can control the deformations within desirable limits. The structure retrofitted with this strategy will have, therefore, a reduction in the acceleration response and a reduction in the deformations, depending on the amount of additional damping introduced in the structure. An illustration of the above strategy is presented here through an evaluation of the inelastic response of the structure through a nonlinear dynamic analysis. The results are compared with different retrofit techniques. A parametric analysis has also been carried out to evaluate the effectiveness of the retrofitting method using different combination of the performance thresholds in accelerations and displacements through fragility analysis.

Performance Evaluation of Steel Moment Resisting Frames with Seismic Retrofit Using Fragility Contour Method (내진 보강된 철골모멘트골조의 취약성 등고선을 통한 성능평가)

  • Kim, Su Dong;Lee, Kihak;Jeong, Seong-Hoon;Kim, Do Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.33-41
    • /
    • 2013
  • Due to a high level of system ductility, steel moment resisting frames have been widely used for lateral force resisting structural systems in high seismic zones. Earthquake field investigations after Northridge earthquake in 1994 and Kobe earthquake in 1995 have reported that many steel moment resisting frames designed before 1990's had suffered significant damages and structural collapse. In this research, seismic performance assessment of steel moment resisting frames designed in accordance with the previous seismic provisions before 1990's was performed. Buckling-restrained braces and shear walls are considered for seismic retrofit of the reference buildings. Increasing stiffness and strength of the buildings using buckling-restrained braces and shear walls are considered as options to rehabilitate the damaged buildings. Probabilistic seismic performance assessment using fragility analysis results is used for the criteria for determining an appropriate seismic retrofit strategy. The fragility contour method can be used to provide an intial guideline to structural engineers when various structural retrofit options for the damaged buildings are available.

Effectiveness of CFRP jackets in post-earthquake and pre-earthquake retrofitting of beam-column subassemblages

  • Tsonos, Alexander G.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.4
    • /
    • pp.393-408
    • /
    • 2007
  • This paper presents the findings of an experimental study to evaluate retrofit methods which address particular weaknesses that are often found in reinforced concrete structures, especially older structures, namely the lack of the required flexural and shear reinforcement within the columns and the lack of the required shear reinforcement within the joints. Thus, the use of a high-strength fiber jacket for cases of post-earthquake and pre-earthquake retrofitting of columns and beam-column joints was investigated experimentally. In this paper, the effectiveness of the two jacket styles was also compared.

Seismic performance evaluation of a steel slit damper for retrofit of structures on soft soil

  • Mahammad Seddiq Eskandari Nasab;Jinkoo Kim;Tae-Sang Ahn
    • Steel and Composite Structures
    • /
    • v.51 no.1
    • /
    • pp.93-101
    • /
    • 2024
  • This paper presents an experimental and analytical study on a steel slit damper designed as an energy dissipative device for earthquake protection of structures considering soil-structure interaction. The steel slit damper is made of a steel plate with a number of slits cut out of it. The slit damper has an advantage as a seismic energy dissipation device in that the stiffness and the yield force of the damper can be easily controlled by changing the number and size of the vertical strips. Cyclic loading tests of the slit damper are carried out to verify its energy dissipation capability, and an analytical model is developed validated based on the test results. The seismic performance of a case study building is then assessed using nonlinear dynamic analysis with and without soil-structure interaction. The soil-structure system turns out to show larger seismic responses and thus seismic retrofit is required to satisfy a predefined performance limit state. The developed slit dampers are employed as a seismic energy dissipation device for retrofitting the case study structure taking into account the soil-structure interaction. The seismic performance evaluation of the model structure shows that the device works stably and dissipates significant amount of seismic energy during earthquake excitations, and is effective in lowering the seismic response of structures standing on soft soil.

Seismic Performance Evaluation of flat Plate Structures Retrofitted with Steel Plates and Braces (강판과 가새로 보강된 무량판 구조물의 내진 성능 평가)

  • Shin, Woo-Seung;Kim, Jin-Koo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.325-330
    • /
    • 2008
  • In this study 3- and 6-story flat plate structures designed only for gravity load are retrofitted with steel plates and braces and their seismic performances are evaluated to verify the effect of seismic retrofit. According to the analysis results obtained from nonlinear static analysis both the strength and stiffness are significantly enhanced as a result of the seismic retrofit. When buckling-restrained braces are used instead of conventional braces, the structures show more ductile behavior, especially in the 3-story structure.

  • PDF

Evaluation of Seismic Safety in School Buildings Applying Artificial Seismic Waves in Earthquake Magnitude of Korea (한국형 중진지역의 인공지진파 생성을 통한 학교건물 내진안전성 평가)

  • Kim, Seung-Hyun;Park, Young-Binuk;Kang, Jun-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.10-18
    • /
    • 2022
  • This report describes the development and stability evaluation of a seismic retrofit method to evaluate the seismic performance of existing school buildings by analyzing the earthquake waveforms that occurred in Korea. Currently, Facilities for seismic retrofit designed for excessive reinforcement are being applied. To compensate for this, optimised the retrofit mothod suitable for domestic situation considering the characteristics of the seismic region, generated a Korean-style artificial seismic wave that meets the seismic design criteria, which is less frequent than other countries.

Improvement of Seismic Performance of Existing Bridges using Isolation (지진격리장치를 이용한 기존 교량의 내진성능 향상)

  • 한경봉;김민지;박선규
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.9-17
    • /
    • 2004
  • The seismic performance evaluation and retrofit process are very important in old existing bridges. If the result is not appropriate. then a retrofit process are required. Among various retrofit methods, the seismic isolation is a very useful method. because it can be applied by replacing old bridge bearings. In this study, the effectiveness of seismic isolation is rationally verified. For this purpose, two seismic isolations used widely are selected and non-linear static and dynamic analyses are performed. The responses of existing bridges are compared with those of retrofited bridges by seismic isolation bridge for earthquake of target level. and seismic performances are evaluated.

An Experimental Study on Flexural Performance of RC Beams Reinforced With Hybrid Prefabricated Retrofit Method (하이브리드 조립형 보강 기법을 적용한 철근콘크리트 보의 휨 성능 평가에 관한 실험적 연구)

  • Moon, Sang Pil;Lee, Sung Ho;Lee, Young Hak;Kim, Min Sook
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.4
    • /
    • pp.131-139
    • /
    • 2020
  • In this paper, the hybrid prefabricated retrofit method is suggested and examined. Six specimens were manufactured in order to evaluate their flexural performance of RC beams. Test parameters include the added beam depth, the thickness of bottom plate, the number of the steel plate with openings. The effects of these parameters on the flexural performance of reinforced concrete beams were examined. The load-deflection behavior and modes of cracks are presented from the test results. At the test result, the flexural capacity and the ductility of the hybrid prefabricated retrofit method was increased satbly. Also, comparing the flexural performance of RC beam and retrofitted RC beams, it was increased that the flexural strength is about 3.3 times, the ductility is about 2.55 times, and energy dissipation capacity is about 7.34 times.

An Evaluation of Seismic Performance for Existing School Building Using Capacity Spectrum Method (성능스펙트럼법을 이용한 기존 학교 건축물의 내진성능평가 및 보강효과 검증)

  • Jang, Jeong-Hyun;Hwang, Ji-Hoon;Yang, Kyeong-Seok;Takashi, Kamiya;Choi, Jae-Hyouk
    • Journal of Advanced Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.11-18
    • /
    • 2012
  • Large scale earthquake was occurred in different parts of the world like Japan (in 1995), Republic of Pakistan (2005), in China (2008) etc and enormous structures were damaged. As a result of collapse of school buildings structures numerous students are died and it had a big impact on the international community. Therefore, the interest of preparing the seismic resistant school building structures in our country is increases as school building are used as emergency shelter for local residents. But the current standard of seismic design ratio of 3.7% is applied for school building in Korea which is only significant earthquake damage is expected. In order to overcome the current situation, seismic performance evaluation is carried out for the existing school building and an accurate and appropriate seismic retrofit is required based on performance evaluation to upgrade the existing school buildings. In this paper, nonlinear analysis on existing school buildings for ATC-40(Applied Technology Council, ATC) and FEMA-356(Federal Emergency Management Agency, FEMA) are carried out using the capacity spectrum method to evaluate seismic performance and to determine the need for retrofitting. In addition, after reinforcement to enhance the seismic performance is applied the seismic performance evaluation is carried out to verify the effectiveness of seismic retrofit.

Seismic Retrofit and Seismic Performance Evaluation of Existing School Structures Using diagonal, x-shaped, chevron Braces (가새를 사용한 기존 학교건축물의 내진보강 및 내진성능평가)

  • Kim, Dong-Keon
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.11 no.2
    • /
    • pp.115-121
    • /
    • 2011
  • Occurrence of earthquakes have been increased all over the world and also, magnitude of earthquakes have been larger these days. Earthquake can be happened in Korea and is not a safe country any more. Many buildings are exposed at danger without any alternatives against earthquake in Korea. Among various kinds of buildings, school buildings are very important and urgent, because many students stays at school and young students have some difficulty to evacuate. Also, most existing school buildings in Korea were not designed considering earthquake resistant design codes. Thus, in this study, 3 types of braces were applied for seismic retrofits of existing school buildings using commercial structural analysis software and effective seismic retrofits were evaluated and discussed based on results by time history analysis.