• Title/Summary/Keyword: evacuation environment

Search Result 128, Processing Time 0.039 seconds

Developing an Evacuation Evaluation Model for Offshore Oil and Gas Platforms Using BIM and Agent-based Model

  • Tan, Yi;Song, Yongze;Gan, Vincent J.L.;Mei, Zhongya;Wang, Xiangyu;Cheng, Jack C.P.
    • International conference on construction engineering and project management
    • /
    • 2017.10a
    • /
    • pp.32-41
    • /
    • 2017
  • Accidents on offshore oil and gas platforms (OOGPs) usually cause serious fatalities and financial losses considering demanding environment platforms locate and complex topsides structure platforms own. Evacuation planning on platforms is usually challenging. The computational tool is a good choice to plan evacuation by emergency simulation. However, the complex structure of platforms and varied evacuation behaviors usually weaken the advantages of computational simulation. Therefore, this study developed a simulation model for OOGPs to evaluate different evacuation plans to improve evacuation performance by integrating building information modeling (BIM) and agent-based model (ABM). The developed model consists of four parts: evacuation model input, simulation environment modeling, agent definition, and simulation and comparison. Necessary platform information is extracted from BIM and then used to model simulation environment by integrating matrix model and network model. During agent definition, in addition to basic characteristics, environment sensing and dynamic escape path planning functions are also developed to improve simulation performance. An example OOGP BIM topsides with different emergent scenarios is used to illustrate the developed model. The results showed that the developed model can well simulate evacuation on OOGPs and improve evacuation performance. The developed model was also suggested to be applied to other industries such as the architecture, engineering, and construction industry.

  • PDF

A Study on Perfomance Based Evacuation Plan for a Large Indoor-Arena (대규모 실내경기장의 성능위주 방재계획에 관한 연구)

  • Choi, Yong-Seok;Kim, Hyung-Keun;Lee, Kyoo-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.10
    • /
    • pp.687-698
    • /
    • 2011
  • In this study, it was analyzed by a numerical analysis that plan/design considerations for ensuring the spectator safety of large arena audiences in a fire emergency evacuation plan. The latest issue, the 'performance-based design', fire and evacuation plan is important. But nowadays 'Specification-based design' is in common. In evacuation simulation, congestion of exit and aisle is ignored because only evacuation time of large-space is mainly analyzed. In smoke flow,'smoke filling effect' tends to be overrated. From now on, when design a field house, it is needed not 'smoke filling effect' and 'large-space evacuation' analysis, but analyzing 'whole building evacuation time' for ensuring fire evacuation safety of spectator.

A Study on Evacuation Safety of Trainingship HANBADA using FDS & maritimeEXODUS

  • KIM, Won-Ouk;HAN, Ki-Young;KIM, Dae-Hee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.3
    • /
    • pp.266-272
    • /
    • 2017
  • In this study, it was simulated and analyzed the evacuation safety to identify the cadets' evacuation time by using maritimeEXODUS which is applied IMO MSC.1/Circ.1238 theory as well as the trim and heel which are the major factor of reducing the ship evacuation speed. In addition, this study carried out a simulation through the special program for fire analysis - FDS (Fire Dynamics Simulator) in order to find the effective evacuation time, i.e. life survival time. Particularly, this study did comparative analysis of the influence on the survival of cadets based on the collected simulation data by fire size and sort. As a result of the analysis, It was analyzed the Evacuation Allowable Limit Temperature $60^{\circ}C$ and resulted that there is no influence in evacuation by temperature. As a result of the analysis on visibility evacuation limit 5 m, it was found that the only one evacuation rallying point could not meet the evacuation safety. However, it derived the perfect evacuation safety under the condition of two rallying points available on wood fire. In case of Kerosene, it was satisfied the evacuation safety if the heeling was under $10^{\circ}$. Moreover, it could not meet the evacuation safety by evacuating through upper deck although there were two evacuation rallying points. When it was set by the lifeboat descending maximum angle-$20^{\circ}heel$ and $10^{\circ}trim$ which was described in SOLAS regulation, it was simulated that the wood fire having two evacuation rallying points in the center of the ship satisfied the evacuation safety.

Effectiveness of critical velocity method for evacuation environment in a railroad tunnel at fire situation (철도터널 내 화재 시 대피환경 확보를 위한 임계속도 산정식의 유효성 평가)

  • Lee, Seung-Chul;Lee, Jae-Heon;Lee, Seung-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.1
    • /
    • pp.51-59
    • /
    • 2004
  • The effectiveness of one dimensional critical velocity method for evacuation environment at 10MW fire size in a railroad tunnel have been investigated in this paper by three dimensional CFD method. It was performed to evaluate the evacuation environment in terms of temperature distribution, visible distance distribution and CO concentration at some tunnel inlet velocity, 1m/s, 2m/s (near critical velocity), and 3m/s. At all inlet velocity, passenger should give away downward the flow direction because the inlet velocity can not afford to sufficient evacuation environment for passengers. In case of 3m/s inlet velocity, however, the evacuation environment for passengers is better than the other cases. To provide more safe evacuation environment on fire situation, tunnel inlet velocity should be larger than critical velocity.

  • PDF

Selection of Transition Point through Calculation of Cumulative Toxic Load -Focused on Incheon Area- (누적독성부하 산정을 통한 주민소산 전환시점 선정에 관한 연구 -인천지역을 중심으로-)

  • Lee, Eun Ji;Han, Man Hyeong;Chon, Young Woo;Lee, Ik Mo;Hwang, Yong Woo
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.6
    • /
    • pp.15-24
    • /
    • 2020
  • With the development of the chemical industry, the chemical accident is increasing every year, thereby increasing the risk of accidents caused by chemicals. The Ministry of Environment provides the criteria for determining shelter-in-place or outdoor evacuation by material, duration of accident, and distance from the toxic substance leak. However, it is hard to say that the criteria for determining the transition point are not clear. Transition point mean the time that evacuation method is switched from shelter-in-place to outdoor evacuation. So, the purpose of this study was to calculate appropriate transition point by comparing the cumulative toxic load. Namdong-gu in Incheon Metropolitan City was finally selected as the target area, considering the current status of the population of Incheon Metropolitan City in 2016 and the statistical survey of chemicals in 2016. The target materials were HCl, HF, and NH3. Modeling was simulated by ALOHA and performed assuming that the entire amount would be leaked for 10 min. Residents' evacuation scenarios were assumed to be shelter-in-place, immediate outdoor evacuation, and outdoor evacuation at an appropriate time after shelter-in-place. Based on the above method, the appropriate transition point from residents located in A(800 m away), B(1,200 m away), C(1,400 m away) and D(2,200 m away) was identified. In HCl, appropriate transition point was after 15 min, after 16 min, after 17 min, after 20 min in order by A, B, C and D. In HF, appropriate transition point was before 1 min or after 16 min, before 4 min or after 19 min, before 5 min or after 20 min, before 14 min or after 26 min in order by A, B, C and D. In NH3, appropriate transition point at A was before 4 min or after 16. Others are not in chemical cloud. This study confirmed the transition point to minimize the cumulative toxic load can be obtained by quantitative method. Through this, it might be possible to select evacuation method quantitatively that cumulative toxic load are minimal. In addition, if the shelter-in-place is maintained without transition to outdoor evacuation, the cumulative toxic load will increase more than outdoor evacuation. Therefore, it was confirmed that actions to reduce the concentration of chemicals in the room were necessary, such as conducting ventilation after the chemical cloud passed through the site.

Simulating Pedestrian Evacuation Using Geographic Information Technologies

  • Jingjing, Shi;Hui, Lin
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.414-416
    • /
    • 2003
  • Pedestrian assemblage is now a normal phenomenon in modern cities. To maintain an unblocked traffic situation, protect the pedestrians' safety and make preparedness for any emergencies is an important task for police department. Modeling pedestrian dynamics and simulating evacuation process can provide useful information for make accurate decisions. In this paper, by virtue of geographic information technologies, the authors proposed a conceptual framework to simulate pedestrian dynamics and evacuation in an open urban environment.

  • PDF

Environment Adaptive Emergency Evacuation Route GUIDE through Digital Signage Systems

  • Lee, Dongwoo;Kim, Daehyun;Lee, Junghoon;Lee, Seungyoun;Hwang, Hyunsuk;Mariappan, Vinayagam;Lee, Minwoo;Cha, Jaesang
    • International Journal of Advanced Culture Technology
    • /
    • v.5 no.1
    • /
    • pp.90-97
    • /
    • 2017
  • Nowadays, the most of commercial buildings are build-out with complex architecture and decorated with more complicated interiors of buildings so establishing intelligible escape routes becomes an important case of fire or other emergency in a limited time. The commercial buildings are already equipped with multiple exit signs and these exit signs may create confusion and leads the people into different directions under emergency. This can jeopardize the emergency situation into a chaotic state, especially in a complex layout buildings. There are many research focused on implementing different approached to improve the exit sign system with better visual navigating effects, such as the use of laser beams, the combination of audio and video cues, etc. However the digital signage system based emergency exit sign management is one of the best solution to guide people under emergency situations to escape. This research paper, propose an intelligent evacuation route GUIDE that uses the combination centralized Wireless Sensor Networks (WSN) and digital signage for people safety and avoids dangers from emergency conditions. This proposed system applies WSN to detect the environment condition in the building and uses an evacuation algorithm to estimate the safe route to escape using the sensor information and then activates the signage system to display the safe evacuation route instruction GUIDE according to the location the signage system is installed. This paper presented the prototype of the proposed signage system and execution time to find the route with future research directions. The proposed system provides a natural intelligent evacuation route interface for self or remote operation in facility management to efficiently GUIDE people to the safe exit under emergency conditions.

A Study on Comparison and Shortening of Evacuation Time Required of University Library by Simulation (시뮬레이션을 통한 대학도서관의 피난 소요시간 비교 관한 연구)

  • An, Jeong-Pill;Kim, Gwang-Hee
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.16 no.2
    • /
    • pp.10-18
    • /
    • 2017
  • The University library is a reality where facilities can be a massive upset by the space of students to study space and book materials. Also, many print materials can cause fires quickly in fires, resulting in massive amounts of human casualties caused by many toxic gases. This study purpose is compares the time spent in the evacuation of the current state through the simulation, which seeks to derive a reasonable library of evacuation design, and improved inside the evacuation. As a result, the most obvious way to reduce the time required to evacuate is to diversify the evacuation routes and to disperse them. However, if the extension of the gate is not feasible, it is possible to reduce the time of escape by increasing the width of the gate and the width of the stair. If the results of this study are applied to new construction or remodeling of the library and prepare for fire evacuation, it will be a much safer library facility.

A Development of Fire Evacuation Simulation System Based 3D Modeling (3차원 공간 기반의 화재피난 시뮬레이션 시스템 개발)

  • Hwang, Yeon-Jung;Koo, Won-Yong;Hwang, Yen-Kyung;Youn, Ho-Ju
    • Fire Science and Engineering
    • /
    • v.25 no.6
    • /
    • pp.156-167
    • /
    • 2011
  • The number of buildings is growing at a rapid pace in Korea. It is driven by significant economic improvements, the rapid population growth and urban centralization. Such being this case, some city are underway to building enlargement, Manhattanization. To Solve these problem and ensure the safety of live, fire Evacuation Simulation system is used for safe check of buildings. Forecasting an egress behavior in building fire is so important in order to construct a safe and reliable environment. But, currently most of the fire evacuation simulation system used in practice are foreign software that is not reflect korean conditions. Thus, This study focus on objectives that develop a fire evacuation system considering Korean Characteristics and create 3D space-based topology. so the system calculate evacuation path. This system developed as a result of research can be used by architectural designer in practice due to it is based 3D spatial information modeling.