• Title/Summary/Keyword: eutrophic freshwaters

Search Result 3, Processing Time 0.015 seconds

Effects of Environmental Factors on Akinete Germination of Anabaena circinalis (Cyanobacteriaceae) Isolated from the North Han River, Korea (북한강 수역에서 분리한 남조류 Anabaena circinalis 휴면포자 발아에 대한 환경요인의 영향)

  • Park, Chae-Hong;Lim, Byung-Jin;You, Kyoung-A;Park, Myung-Hwan;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.4
    • /
    • pp.292-301
    • /
    • 2014
  • Akinete germination may be a starting point of some akinete-producing cyanobacterial blooms in eutrophic freshwater systems. This study examined germinability of akinete of a cyanobacterium Anabaena circinalis isolated from the sediment of the North Han River (Cheongpyung Dam), Korea, under several environmental factors such as temperature ($5{\sim}25^{\circ}C$), light ($0{\sim}100{\mu}mol\;photons\;m^{-2}\;s^{-1}$), nutrients (nitrogen and phosphorus) and pH (5~12). The high germination rate appeared at high temperature: >55% at $25^{\circ}C$, followed by 15% at $15^{\circ}C$, $10^{\circ}C$ and 10% at $5^{\circ}C$. Low light intensity was favorable for akinete germination. Over 45% of germination occurred at low light intensities (5, 15 and $30{\mu}mol\;photons\;m^{-2}\;s^{-1}$), while less than 10% of germination occurred at both 50 and $100{\mu}mol\;photons\;m^{-2}\;s^{-1}$. No germination occurred in the dark condition. Akinete germination rate increased with nutrient (phosphorus and nitrogen) enrichment, and nitrogen addition showed greater effect on the germination compared to phosphorus addition. Akinetes germinated well at neutral or slightly alkaline pH condition (pH 7 and pH 8: >55%), but no germination was observed at pH 11~12. The present study demonstrates some favorable ambient conditions of Anabaena circinalis germination, which could provide useful information to study the germination conditions of other Anabaena species or akinete-forming algae and predict its bloom in eutrophic freshwaters.

Global Occurrence of Harmful Cyanobacterial Blooms and N, P-limitation Strategy for Bloom Control (유해 남조류의 세계적 발생현황 및 녹조제어를 위한 질소와 인-제한 전략)

  • Ahn, Chi-Yong;Lee, Chang Soo;Choi, Jae Woo;Lee, Sanghyup;Oh, Hee-Mock
    • Korean Journal of Environmental Biology
    • /
    • v.33 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • Increased harmful algal blooms by cyanobacteria are threatening public health and limiting human activities related with freshwater ecosystems. Phosphorus (P) has long been suggested as a critical nutrient for cyanobacterial bloom through field research in Canada during the 1970s, proposing a P-based freshwater management guideline. However, recently, nitrogen (N) has also been highlighted as an impacting nutrient on cyanobacterial harmful algal blooms (CyanoHABs). Due to the intensive and frequent observation of Microcystis, this kind of paradigm shift from P limitation to season-dependent N or P limitation has an important implication for a dual nutrient management strategy in eutrophic freshwaters. Through recent international researches, general strategies to control CyanoHABs in lakes and reservoirs are as follows: a dual nutrient (N & P) reduction, wastewater collection and treatment, pre-treatment of influent water in buffer zones, dredging of sediment, reduction of residence time, algal collection, and precipitation and flocculation of cyanobacteria. In addition, sustainable and integrative freshwater algae management should be carried out, based on the ecological aspect, because cyanobacteria are not the target organism to be eradicated, but an essential microbial member in the freshwater ecosystem.

Thermal Effluent Effects of Domestic Sewage and Industrial Wastewater on the Water Quality of Three Small Streams (Eung, Chiljang and Buso) during the Winter Season, Korea (동계 저온기의 소하천 수질에 미치는 하·폐수의 온배수 영향)

  • Soon-Jin, Hwang;Jeon, Gyeonghye;Eum, Hyun Soo;Kim, Nan-Young;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.2
    • /
    • pp.238-253
    • /
    • 2017
  • The sewage and wastewater (SAW) are a well-known major source of eutrophication and greentide in freshwaters and also a potential source of thermal pollution; however, there were few approaches to thermal effluent of SAW in Korea. This study was performed to understand the behavioral dynamics of the thermal effluents and their effects on the water quality of the connected streams during winter season, considering domestic sewage, industrial wastewater and hot spring wastewater from December 2015 to February 2016. Sampling stations were selected the upstream, the outlet of SAW, and the downstream in each connected stream, and the water temperature change was monitored toward the downstream from the discharging point of SAW. The temperature effect and its range of SAW on the stream were dependent not only on the effluent temperature and quantity but also on the local air temperature, water temperature and stream discharge. The SAW effects on the stream water temperature were observed with temperature increase by $2.1{\sim}5.8^{\circ}C$ in the range of 1.0 to 5.5 km downstream. Temperature effect was the greatest in the hot spring wastewater despite of small amount of effluent. The SAW was not only related to temperature but also to the increase of organic matter and nutrients in the connected stream. The industrial wastewater effluent was discharged with high concentration of nitrogen, while the hot spring wastewater was high in both phosphorus and nitrogen. The difference between these cases was due to with and without chemical T-P treatment in the industrial and the hot spring wastewater, respectively. The chlorophyll-a content of the attached algae was high at the outlet of SAW and the downstream reach, mostly in eutrophic level. These ecological results were presumably due to the high water temperature and phosphorus concentration in the stream brought by the thermal effluents of SAW. These results suggest that high temperature of the SAW needs to be emphasized when evaluating its effects on the stream water quality (water temperature, fertility) through a systematized spatial and temporal investigation.