• 제목/요약/키워드: eutectic Si

검색결과 183건 처리시간 0.024초

Monolithic 3D-IC 구현을 위한 In-Sn을 이용한 Low Temperature Eutectic Bonding 기술

  • 심재우;박진홍
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.338-338
    • /
    • 2013
  • Monolithic three-dimensional integrated circuits (3D-ICs) 구현 시 bonding 과정에서 발생되는 aluminum (Al) 이나 copper (Cu) 등의 interconnect metal의 확산, 열적 스트레스, 결함의 발생, 도펀트 재분포와 같은 문제들을 피하기 위해서는 저온 공정이 필수적이다. 지금까지는 polymer 기반의 bonding이나 Cu/Cu와 같은 metal 기반의 bonding 등과 같은 저온 bonding 방법이 연구되어 왔다. 그러나 이와 같은 bonding 공정들은 공정 시 void와 같은 문제가 발생하거나 공정을 위한 특수한 장비가 필수적이다. 반면, 두 물질의 합금을 이용해 녹는점을 낮추는 eutectic bonding 공정은 저온에서 공정이 가능할 뿐만 아니라 void의 발생 없이 강한 bonding 강도를 얻을 수 있다. Aluminum-germanium (Al-Ge) 및 aluminum-indium (Al-In) 등의 조합이 eutectic bonding에 이용되어 각각 $424^{\circ}C$$454^{\circ}C$의 저온 공정을 성취하였으나 여전히 $400^{\circ}C$이상의 eutectic 온도로 인해 3D-ICs의 구현 시에는 적용이 불가능하다. 이러한 metal 조합들에 비해 indium (In)과 tin (Sn)은 각각 $156^{\circ}C$$232^{\circ}C$로 굉장히 낮은 녹는점을 가지고 있기 때문에 In-Sn 조합은 약 $120^{\circ}C$ 정도의 상당히 낮은eutectic 온도를 갖는다. 따라서 본 연구팀은 In-Sn 조합을 이용하여 $200^{\circ}C$ 이하에서monolithic 3D-IC 구현 시 사용될 eutectic bonding 공정을 개발하였다. 100 nm SiO2가 증착된 Si wafer 위에 50 nm Ti 및 410 nm In을 증착하고, 다른Si wafer 위에 50 nm Ti 및 500 nm Sn을 증착하였다. Ti는 adhesion 향상 및 diffusion barrier 역할을 위해 증착되었다. In과 Sn의 두께는 binary phase diagram을 통해 In-Sn의 eutectic 온도인 $120^{\circ}C$ 지점의 조성 비율인 48 at% Sn과 52 at% In에 해당되는 410 nm (In) 그리고 500 nm (Sn)로 결정되었다. Bonding은 Tbon-100 장비를 이용하여 $140^{\circ}C$, $170^{\circ}C$ 그리고 $200^{\circ}C$에서 2,000 N의 압력으로 진행되었으며 각각의 샘플들은 scanning electron microscope (SEM)을 통해 확인된 후, 접합 강도 테스트를 진행하였다. 추가로 bonding 층의 In 및 Sn 분포를 확인하기 위하여 Si wafer 위에 Ti/In/Sn/Ti를 차례로 증착시킨 뒤 bonding 조건과 같은 온도에서 열처리하고secondary ion mass spectrometry (SIMS) profile 분석을 시행하였다. 결론적으로 본 연구를 통하여 충분히 높은 접합 강도를 갖는 In-Sn eutectic bonding 공정을 $140^{\circ}C$의 낮은 공정온도에서 성공적으로 개발하였다.

  • PDF

나노인덴터와 원자력간 현미경을 이용한 결정립 제어 레오로지 소재의 변형거동에 관한 연구 (A Study on Deformation Behavior of the Grain-Size Controlled Rheology Material by Using Nanoindenter and AFM)

  • 윤성원;김정원;강충길
    • 소성∙가공
    • /
    • 제13권4호
    • /
    • pp.374-381
    • /
    • 2004
  • In this study, the deformation behavior of semi-solid Al-Si alloy was investigated by nanoindenter as a part of the research on the surface crack behavior in thixoformed automobile component. The microstructure of semi-solid Al-Si alloy consists of primary and eutectic regions. In eutectic regions the crack initiation begins with initial fracture of the eutectic silicon particles and inside other intermetallic phases. Nano-deformation characteristics in the eutectic and primary phase of semi-solid aluminium alloy were investigated through the nano-indentation experiments and the AFM observation. In addition, mechanical properties of each region were investigated and compared with each other.

Sr 개량처리된 사형주조 Al-7Si-0.35Mg 합금의 열처리에 따른 공정 Si상 변화거동 및 특성평가 (Behavior of Eutectic Si and Mechanical Properties of Sr Modified Al-7Si-0.35Mg alloy with Solid Solution Treatment for Sand Casting)

  • 김명균;황석민
    • 한국주조공학회지
    • /
    • 제38권1호
    • /
    • pp.1-8
    • /
    • 2018
  • In this study, we focused on the correlation between the solidification structure, heat treatment and mechanical properties of the A356 alloy according to the conditions of Sr modification. The microstructural evolution of the eutectic Si and ${\alpha}-Al$ phase in the A356 alloy castings depending on the amount of Sr were investigated during solid solution heat treatment using an optical microscope, a scanning electron microscope and an image analyzer. In addition, tensile tests on the heat treated materials examined the relationship between the microstructure and the fracture surface. The as-cast A356 alloys under 40 ppm Sr showed an undermodified microstructure, but that of the added 60-80 ppm Sr had well modified structure of fine fibrous silicon. After solid solution treatment, the microstructure of the undermodified A356 alloy exhibited a partially spheroidized morphology, but the remainder showed the fragmentation of fibrous shaped silicon. The spheroidization of the eutectic silicon in the modified A356 alloys was completed during heat treatment, which was very effective in increasing the elongation. This is supported by the fracture surface in the tensile test.

${\gamma}$-$6Bi_2O_3$.$SiO_2$ 결정을 포함하는 복합다결정체의 작성 (Preparation of Composite Polycrystals Including ${\gamma}$-$6Bi_2O_3$.$SiO_2$)

  • 김호건
    • 한국세라믹학회지
    • /
    • 제23권2호
    • /
    • pp.13-20
    • /
    • 1986
  • Composite polycrystals including ${\gamma}$-$6Bi_2O_3$.$SiO_2$ crystal which have needlelike regular structure are useful for the high resolution optical devices. For the purpose of obtaining the composite polycrystals described above the melts of eutectic composition in the three eutectic systems including $6Bi_2O_3$.$SiO_2$ composition were unidirectionally solidified at a rate of 0.05 and 0.25 cm/h under a thermal gradient of 10$0^{\circ}C$/m. Composite polycrystals of relatively regular structure in which needlelike ${\gamma}$-$6Bi_2O_3$.$SiO_2$ crystals were arrayed in parallel with $2Bi_2O_3$.$B_2O_3$ crystal matrix were obtained when the eutectic melt of $6Bi_2O_3$.$SiO_2 -2Bi_2O_3$.$B_2O_3$ system was solidified at a rate of 0.25 cm/h. Partial structural irregularity however was found in the obtained composite polycrystals.

  • PDF

Mg 첨가에 따른 A356 합금의 열처리 및 기계적 특성 변화 (Effects of Mg Addition on Heat Treatment and Mechanical Properties of A356 Alloy)

  • 조재찬;김광삼;임인택;김대환;심성용;임수근
    • 한국주조공학회지
    • /
    • 제36권6호
    • /
    • pp.195-201
    • /
    • 2016
  • The effects of Mg addition on heat treatment and mechanical properties of A356 alloy were investigated. With increased amounts of Mg addition to A356 alloy, the grain size decreased and eutectic Si was refined. And, this process can improve the mechanical properties. Solid solution heat treatment causes the spheroidizing of eutectic Si. In this study, although eutectic Si was refined with Mg addition, solid solution time increased from 2 hours to 6 hours with Mg addition, and aging time also increased, from 4 hours to 8 hours. After heat treatment, Mg2Si remained in a formation of Chinese script. And, Chinese script Mg2Si formed with Mg addition caused a reduction of the elongation of the alloys according to the stress concentration.

과공정 Al-Si 합금의 미세조직에 미치는 Sc의 영향 (The Effects of Sc on the Microstructures of Hypereutectic Al-Si Alloys)

  • 정유성;김명한;최석환
    • 한국재료학회지
    • /
    • 제15권7호
    • /
    • pp.480-485
    • /
    • 2005
  • Sc has been known to be an very effective ppt-hardening element in Al and Al alloys and also to be effective in modification of eutectic Si in hypoeutectic Al-Si alloys. The modification mechanism of Sc is different from that of the traditional modifier Sr in Al-Si alloys. In the present study the effects of Sc on the primary and eutectic Si in hypereutectic Al-Si alloys were investigated with evaluating the microstructures with OM, EPMA and EBSD methods. The results represent that Sc has only a small effect on primary Si when added less than $0.8wt\%$. However, when Sc addition leading to the precipitation of metallic Sc within primary Si reaches $1.6wt\%$, very coarse primary Si occurs.

Sc 첨가에 따른 Al-6Si-2Cu 합금의 미세조직 개량화 (Effect of Sc Addition on the Microstructure Modification of Al-6Si-2Cu Alloy)

  • 안성빈;김정석
    • 열처리공학회지
    • /
    • 제35권3호
    • /
    • pp.150-158
    • /
    • 2022
  • The effects of scandium addition on the Al-6Si-2Cu Alloy were investigated. The Al-6Si-2Cu-Sc alloy was prepared by gravity die casting process. In this study, scandium was added at 0.2 wt%, 0.4 wt%, 0.8 wt%, and 1.0 wt%. The microstructure of Al-6Si-2Cu-Sc alloy was investigated using Optical Microscope, Field Emission Scanning Electron Microscope, Electron Back Scatter Diffraction, and Transmission Electron microscope. The microstructure of Al-6Si-2Cu alloy with scandium added changed from dendrite structure to equiaxed crystal structure in specimens of 0.4 wt% Sc or more, and coarse needle-shape eutectic Si and β-Al5FeSi phases were segmented and refined. The nanosized Al3Sc intermetallic compound was observed to be uniformly distributed in the modified Al matrix.

Al6Si2Cu 알루미늄 합금의 기계적 물성 향상을 위한 이단계 고용화 열처리 (Two-step Solution Treatment for Enhancement of Mechanical Properties of AlSiCu Aluminum Alloy)

  • 박상규;김정석
    • 열처리공학회지
    • /
    • 제31권3호
    • /
    • pp.97-103
    • /
    • 2018
  • The objective of this study is to develop the mechanical properties of AlSiCu aluminum alloy by the two-step solution heat treatment. The microstructure of gravity casting specimen represents a typical dendrite structure having a secondary dendrite arm spacing (SDAS) of 40 mm. In addition to the Al matrix, a large amount of coarsen eutectic Si phase, $Al_2Cu$ intermetallic phase, and Fe-rich phases are generated. The eutectic Si phases are fragmented and globularized with solution heat treatment. Also, the $Al_2Cu$ intermetallic phase is resolutionized into the Al matrix. The $2^{nd}$ solution temperature at $525^{\circ}C$ might be a optimum condition for enhancement of mechanical properties of AlSiCu aluminum alloy.

과공정 Al-Si합금의 원심주조시 용탕온도와 금형회전수가 경사기능 조직에 미치는 영향에 대한 해석적 고찰 (A Numerical Study of the Effect of Casting Temperature and Rotational Frequency of Mold on the Functionally Graded Microstructure in Centrifugal Casting of Hyper-eutectic Al-Si Alloy)

  • 박정욱;김헌주
    • 한국주조공학회지
    • /
    • 제29권2호
    • /
    • pp.78-85
    • /
    • 2009
  • Functionally graded microstructure of centrifugal cast Al-Si alloy, especially distribution of primary Si particles according to the changes of melt pouring temperature and rotation frequency was investigated by numerical simulation. Moving velocity of Si particles increased as the melt pouring temperature and rotational frequency of mold increased. Therefore, segregation tendency of primary Si particles toward inner side of cylindrical sample increased as the melt pouring temperature and rotational frequency of mold increased. Rich distribution region of particles was located at 0.9, 0.7, 0.4 mm from inner surface of cylindrical sample under the centrifugal cast condition of $750^{\circ}C$ melt pouring temperature and 1500, 2000 and 2500 rpm mold rotational frequencies, respectively, by numerical simulation.

CV흑연주철(黑鉛鑄鐵)의 응고특성(凝固特性)에 관한 연구(硏究) (A Study on the Solidification Characteristics of CV Graphite Cast Iron)

  • 김철진;김수영;이계완
    • 한국주조공학회지
    • /
    • 제5권3호
    • /
    • pp.5-12
    • /
    • 1985
  • Many researchers have studied the eutectic solidification of CV Graphite Cast Iron qualitatively. However quantative studies have not been done. The type of eutectic solidification of CV Graphite Cast Iron treated with CG Alloy (Fe-Si-Mg-5Ti-Ca-Ce) was studied quantitatively through M.D.E. value (Mushy Degree of Eutectic Solidification) = $t_2/t_1)$, where $t_1$ is the difference of the eutectic solidification starting time between surface and center part of the casting sample, and $t_2$ is the time of eutectic solidification of the center part. Following results were obtained. (1) The M.D.E. value of CV graphite cast iron lies between that of spheroidal graphite and that of flake graphite cast iron but is closer to that of Flake graphite cast iron. (2) The M.D.E. value of CV graphite cast iron depends upon CV ratio. (3) The time required for eutectic solidification increases as graphite form is changed from Flake, CV. to spheroidal graphite. (4) The M.D.E. value increases as cooling rate increases.

  • PDF