• 제목/요약/키워드: eukaryotic

검색결과 513건 처리시간 0.029초

효모의 미토콘드리아 형질전환을 통한 인위적인 operon 형식의 유전자 발현 규명 (Identification of Artificial Operon Gene Expression via Yeast Mitochondrial Transformation)

  • 김경민;설일환
    • 생명과학회지
    • /
    • 제16권3호
    • /
    • pp.365-368
    • /
    • 2006
  • 본 실험에서는 식물의 유용유전자를 개발하여 그 발현양상을 확인하기 위하여 효모를 이용하면 그 발현양상을 비교적 빠르게 확인할 수 있는 미토콘드리아 형질전환 방법을 규명하였다. 또한 미토콘드리아(mt)에 관련된 유전자를 TPI promoter를 가진 plasmid에 재조합한 후 효모에 형질전환하여 mt에서 그 유전자의 특성이 발현 되는 것을 확인하였다. 따라서 본 연구의 결과로 mt에 관련된 유전자를 식물의 조직에 형질전환 하여 1개 이상의 유전자가 식물의 mt에 삽입되어 그 유전자의 특성이 발현되는데 이용되어 질수 있을 것이라 생각된다.

Isolation and Characterization of UV-inducible gene in Eukaryotic cells

  • Choi, In-Soon
    • Journal of Life Science
    • /
    • 제11권1호
    • /
    • pp.52-56
    • /
    • 2001
  • The present study intends to characterize the DNA damage-inducible responses in eukaryotic cells. The fission yeast, S. pombe, which displays efficient DNA repair systems, was used in this study as a model system for higher eukaryotes. To study UV-inducible responses in S. pombe, five UV-inducible cDNA clones were isolated from S. pombe by using subtration hybridization method. To investigate the expression of isolated genes, the cellular levels of the transcripts of these genes were determined by Northern blot analysis after UV-irradiation. The transcripts of isolated gene (UV130) increased rapidly and reached maximum accumulation after UV-irradiation. Compared to the message levels of control, the levels of maximal increase were approximately 5 fold to UV-irradiation. In order to investigation whether the increase of UV130 transcripts was a specific results of UV-irradiation, UV130 transcript levels were examined after treating the cells to Methylmethane sulfonate (MMS). The transcripts of UV130 were not induced by treatment of 0.25% MMS. These results implied that the effects of damaging agents are complex and different regulatory pathways exist for the induction of these genes. To characterize the structure of UV130 gene, nucleotide sequences were analyzed. The nucleotide sequence of 1,340 nucleotide excluding poly(A) tail contains one open reading frame, which encodes a protein of 270 amino acids. The predicted amino acid sequences of UV130 do not exhibit any significant similarity to ther known sequences in the database.

  • PDF

Expressed Sequence Tags of Trichinella spiralis Muscle Stage Larvae

  • Park, Hae-Kyung;Chang, Seong-Won;Kang, Se-Won;Cho, Min-Kyoung;Choi, Sun-Hee;Hong, Yeon-Chul;Lee, Yong-Seok;Jeong, Hae-Jin;Yu, Hak-Sun
    • Parasites, Hosts and Diseases
    • /
    • 제46권2호
    • /
    • pp.59-63
    • /
    • 2008
  • In order to obtain greater insight into the relevant genomic expression patterns of Trichinella spiralis, 992 expressed sequence tags (ESTs) were collected from a cDNA library of T. spiralis muscle stage larvae and assembled into 60 clusters and 385 singletons. Of them, 445 (44.7%) ESTs were annotated to their homologous genes, and small fractions were matched to known genes of nematodes. The annotated ESTs were classified into 25 eukaryotic orthologous groups (KOG). Cytochrome C oxidase (34 clones) was found to be most frequent species.

Structural and Functional Insight into Proliferating Cell Nuclear Antigen

  • Park, So Young;Jeong, Mi Suk;Han, Chang Woo;Yu, Hak Sun;Jang, Se Bok
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권4호
    • /
    • pp.637-647
    • /
    • 2016
  • Proliferating cell nuclear antigen (PCNA) is a critical eukaryotic replication accessory factor that supports DNA binding in DNA processing, such as DNA replication, repair, and recombination. PCNA consists of three toroidal-shaped monomers that encircle double-stranded DNA. The diverse functions of PCNA may be regulated by its interactions with partner proteins. Many of the PCNA partner proteins generally have a conserved PCNA-interacting peptide (PIP) motif, located at the N- or C- terminal region. The PIP motif forms a 310 helix that enters into the hydrophobic groove produced by an interdomain-connecting loop, a central loop, and a C-terminal tail in the PCNA. Post-translational modification of PCNA also plays a critical role in regulation of its function and binding partner proteins. Structural and biochemical studies of PCNA-protein will be useful in designing therapeutic agents, as well as estimating the outcome of anticancer drug development. This review summarizes the characterization of eukaryotic PCNA in relation to the protein structures, functions, and modifications, and interaction with proteins.

Prediction of subcellular localization of proteins using pairwise sequence alignment and support vector machine

  • Kim, Jong-Kyoung;Raghava, G. P. S.;Kim, Kwang-S.;Bang, Sung-Yang;Choi, Seung-Jin
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2004년도 The 3rd Annual Conference for The Korean Society for Bioinformatics Association of Asian Societies for Bioinformatics 2004 Symposium
    • /
    • pp.158-166
    • /
    • 2004
  • Predicting the destination of a protein in a cell gives valuable information for annotating the function of the protein. Recent technological breakthroughs have led us to develop more accurate methods for predicting the subcellular localization of proteins. The most important factor in determining the accuracy of these methods, is a way of extracting useful features from protein sequences. We propose a new method for extracting appropriate features only from the sequence data by computing pairwise sequence alignment scores. As a classifier, support vector machine (SVM) is used. The overall prediction accuracy evaluated by the jackknife validation technique reach 94.70% for the eukaryotic non-plant data set and 92.10% for the eukaryotic plant data set, which show the highest prediction accuracy among methods reported so far with such data sets. Our numerical experimental results confirm that our feature extraction method based on pairwise sequence alignment, is useful for this classification problem.

  • PDF

Prokaryotic BirA ligase biotinylates K4, K9, K18 and K23 in histone H3

  • Kobza, Keyna;Sarath, Gautam;Zempleni, Janos
    • BMB Reports
    • /
    • 제41권4호
    • /
    • pp.310-315
    • /
    • 2008
  • BirA ligase is a prokaryotic ortholog of holocarboxylase synthetase (HCS) that can biotinylate proteins. This study tested the hypothesis that BirA ligase catalyzes the biotinylation of eukaryotic histones. If so, this would mean that recombinant BirA ligase is a useful surrogate for HCS in studies of histone biotinylation. The biological activity of recombinant BirA ligase was confirmed by enzymatic biotinylation of p67. In particular, it was found that BirA ligase biotinylated both calf thymus histone H1 and human bulk histone extracts. Incubation of recombinant BirA ligase with H3-based synthetic peptides showed that lysines 4, 9, 18, and 23 in histone H3 are the targets for the biotinylation by BirA ligase. Modification of the peptides (e.g., serine phosphorylation) affected the subsequent biotinylation by BirA ligase, suggesting crosstalk between modifications. In conclusion, this study suggests that prokaryotic BirA ligase is a promiscuous enzyme and biotinylates eukaryotic histones. Moreover the biotinylation of histones by BirA ligase is consistent with the proposed role of human HCS in chromatin.

Sequence Analysis and Potential Action of Eukaryotic Type Protein Kinase from Streptomyces coelicolor A3(2)

  • Roy, Daisy R.;Chandra, Sathees B.C.
    • Genomics & Informatics
    • /
    • 제6권1호
    • /
    • pp.44-49
    • /
    • 2008
  • Protein kinase C (PKC) is a family of kinases involved in the transduction of cellular signals that promote lipid hydrolysis. PKC plays a pivotal role in mediating cellular responses to extracellular stimuli involved in proliferation, differentiation and apoptosis. Comparative analysis of the PKC-${\alpha},{\beta},{\varepsilon}$ isozymes of 200 recently sequenced microbial genomes was carried out using variety of bioinformatics tools. Diversity and evolution of PKC was determined by sequence alignment. The ser/thr protein kinases of Streptomyces coelicolor A3 (2), is the only bacteria to show sequence alignment score greater than 30% with all the three PKC isotypes in the sequence alignment. S.coelicolor is the subject of our interest because it is notable for the production of pharmaceutically useful compounds including anti-tumor agents, immunosupressants and over two-thirds of all natural antibiotics currently available. The comparative analysis of three human isotypes of PKC and Serine/threonine protein kinase of S.coelicolor was carried out and possible mechanism of action of PKC was derived. Our analysis indicates that Serine/ threonine protein kinase from S. coelicolor can be a good candidate for potent anti-tumor agent. The presence of three representative isotypes of the PKC super family in this organism helps us to understand the mechanism of PKC from evolutionary perspective.

Molecular Characterization and Expression Patterns of Porcine Eukaryotic Elongation Factor 1 A

  • Wang, H.L.;Wang, H.;Zhu, Z.M.;Yang, S.L.;Fen, S.T.;Li, Kui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권7호
    • /
    • pp.953-957
    • /
    • 2006
  • The eukaryotic elongation factor 1 A (EEF1A) participates in protein synthesis by forming the eEF1A GTP tRNA complex to deliver aminoacyl-tRNA to the A site of ribosomes. This study described cDNA sequences and partial genomic structure of porcine EEF1A1. The porcine EEF1A1 gene encoded a protein with 462 amino acids, which shared complete homology with human, chimpanzee and dog. The temporal expression pattern showed the diversity of EEF1A1 level in mRNA was relatively minor in prenatal embryo skeletal muscle, however, the expression decreased during aging after birth in skeletal muscle of the Chinese Tongcheng pig. The spatial expression patterns indicated that the gene expressed in skeletal muscle, heart, lung, liver, kidney, fat and spleen. In addition, we assigned the gene to porcine chromosome 1 using a radiation hybrid panel.

Peptide Nucleic Acid(PNA)를 이용한 antisense 기법에 적용할 병렬 컴퓨팅용 Bioinformatics tool 개발 (Developing a Bioinformatics Tool for Peptide Nucleic Acid (PNA) antisense Technique Utilizing Parallel Computing System)

  • 김성조;전호상;홍승표;김현창;김한집;민철기
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 한국컴퓨터종합학술대회 논문집 Vol.33 No.1 (A)
    • /
    • pp.43-45
    • /
    • 2006
  • Unlike RNA interference, whose usage is limited to eukaryotic cells, Peptide Nucleic Acid (PNA) technique is applicable to both eukaryotic and prokaryotic cells. PNA has been proven to be an effective agent for blocking gene expressions and has several advantages over other antisense techniques. Here we developed a parallel computing software that provides the ideal sequences to design PNA oligos to prevent any off-target effects. We applied a new approach in our location-finding algorithm that finds a target gene from the whole genome sequence. Message Passing Interface (MPI) was used to perform parallel computing in order to reduce the calculation time. The software will help biologists design more accurate and effective antisense PNA by minimizing the chance of off-target effects.

  • PDF

Viriditoxin Induces G2/M Cell Cycle Arrest and Apoptosis in A549 Human Lung Cancer Cells

  • Park, Ju Hee;Noh, Tae Hwan;Wang, Haibo;Kim, Nam Deuk;Jung, Jee H.
    • Natural Product Sciences
    • /
    • 제21권4호
    • /
    • pp.282-288
    • /
    • 2015
  • Viriditoxin is a fungal metabolite isolated from Paecilomyces variotii, which was derived from the giant jellyfish Nemopilema nomurai. Viriditoxin was reported to inhibit polymerization of FtsZ, which is a key protein for bacterial cell division and a structural homologue of eukaryotic tubulin. Both tubulin and FtsZ contain a GTP-binding domain, have GTPase activity, assemble into protofilaments, two-dimensional sheets, and protofilament rings, and share substantial structural identities. Accordingly, we hypothesized that viriditoxin may inhibit eukaryotic cell division by inhibiting tubulin polymerization as in the case of bacterial FtsZ inhibition. Docking simulation of viriditoxin to ${\beta}-tubulin$ indicated that it binds to the paclitaxel-binding domain and makes hydrogen bonds with Thr276 and Gly370 in the same manner as paclitaxel. Viriditoxin suppressed growth of A549 human lung cancer cells, and inhibited cell division with G2/M cell cycle arrest, leading to apoptotic cell death.