• Title/Summary/Keyword: eugenol acetate

Search Result 20, Processing Time 0.026 seconds

Isolation and Identification of Antifungal Compounds from Eugenia caryophyllata Extracts (정향 추출물로부터 항진균성 물질의 분리 및 동정)

  • Lee, Jin-Man;Hur, Sang-Sun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.740-747
    • /
    • 2014
  • Antifungal properties of clove(Eugenia caryophyllata) against food spoilage microorganism, Penicillium rugullosum IFO 4683 was investigated. Antifungal activity of the essential oil was as equivalent as potassium metabisulfite and myconazole. The clove extracts was fractionated to hexane, chloroform, ethyl acetate, butanol and water fraction. Hexane fraction showed the highest inhibitory effect on the Penicillium rugullosum IFO 4683. Hexane fraction was further fractionated by silica gel column chromatography and thin layer chromatography(TLC). The antifungal compound was isolated from their fractions and their chemical structures were identified as eugenol, eugenol acetate and chavicol by EI-MS, $^1H$-NMR and $^{13}C$-NMR.

Studies on the constituents of philippine piper betle leaves

  • Rimando, Agnes-M.;Han, Byung-Hoon;Park, Jeong-Hii;Magdalena-C. Cantoria
    • Archives of Pharmacal Research
    • /
    • v.9 no.2
    • /
    • pp.93-97
    • /
    • 1986
  • Fourteen volatile components including eight allypyrocatechol analogs were isolated and identified from the essential oil and ether soluble fraction of Philippine Piper bettle leaves (Piperaceae). The major constituents of Philippine Piper betle oil were chavibetol and chavibetol acetate. Capilary GC analysis of the oil showed chavibetol (53.1%), chavibetol acetate (15.5%), caryophyllene (3.79%), allypyrocatechol diacetate (0.71%), campene (0.48), chavibetol methylether (=methyl eugenol, 0.48%), eugenol (0/32%), $\alpha$-pinene(0.21%), $\beta$-pinene(0.21%), $\alpha$-limonene(0.14%), safrole (0.11%), 1.8-cineol(0.04%), and allylpyrocatechol monoacetate. The major component of the ether soluble fraction was allylpyrocatechol (2.38% of the leaves).

  • PDF

Studies on the Volatile Flavor Components of Spices in Curry (향신료의 휘발성 향미성분에 관한 연구)

  • Kim, Hyean-Wee;Huh, Kyung-Taek;Choi, Chun-Un
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.127-135
    • /
    • 1989
  • The volatile components of nutmeg, cumin, cardamon, turmeric, coriander, clove, allspice, cassia, fennel, celery seed and black pepper, having a characteristic spicy aroma and being used as an ingradient of curry powder, were investigated. After steam distillation followed by extraction with diethyl ether: n-pentane(2:1, v/v) mixture, the volatile components were identified by capillary GC and GC/MS. As a result, following major compounds were identified. ${\alpha}-pinene(11.06%)$, ${\beta}-pinene(11.17%)$ and myristicin(19.98%) in nutmeg, cuminaldehyde(37.68%) in cumin, ${\alpha}-terpineol(47.33%)$ and 1, 8-cineol(20.56%) in cardamon, linalool(61.72%) in coriander, eugenol(63.63%) and eugenol acetate(20.59%) in clove, eugenol(80.12%) and methyl eugenol(10.85%) in allspice, cinnamaldehyde(82.29%) in cassia, anethole(79.92%) in fennel.

  • PDF

Insecticidal Activity of Extracts Isolated from Syzygium Aromaticum

  • Jung, Ji Young;Yang, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.5
    • /
    • pp.624-633
    • /
    • 2014
  • This study separated the crude extract (70% ethanol) of and its three fractions (hexane, chloroform and ethyl acetate extracts) on the basis of polarity indexes, and examined for their insecticidal activities against aphid (Uroleucon lactucicola). For crude extraction, the 70% ethanol extract showed the best extract yield (58.0%) and insecticidal activity (69.0%) among the various concentrations tested (water, 30% ethanol, 50% ethanol, 70% ethanol and 95% ethanol). The major chemical compounds of different fractions (hexane, chloroform and ethyl acetate extracts) were identified as eugenol by head space-GC-MS analysis. The hexane extract showed the highest eugenol content (43.7%) and insecticidal activity (80.0%). The insecticidal activity is accordingly believed to be attributable to the eugenol component. This may provide a useful starting point for the development of bio-pesticides.

Anticoagulation and Anticancer Constituents from Eugenia caryophyllata Thunb

  • Han, Kyung-Min;Kim, Dong-Hyun;Ahn, Eun-Mi;Lee, Youn-Hyung;Chung, In-Sik;Kim, Dae-Keun;Kwon, Byoung-Mog;Kim, Sung-Hoon;Baek, Nam-In
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.2
    • /
    • pp.82-88
    • /
    • 2007
  • From the EtOAc fraction of Eugenia caryophyllata, four compounds were isolated through activity-guided silica gel column chromatography, From the result of spectroscopic data including NMR, MS and IR, the chemical structures of the compounds were determined as 1-allyl-4-hydroxy-3-methoxybezene acetate (eugenol acetate, 1), 1-allyl-4-hydroxy-3-methoxybezene (eugenol, 2), $3{\beta}-hydroxyolean-12-en-28-oic$ acid (oleanolic acid, 3) and $2{\alpha}$, $3{\beta}-dihydroxyolean-12-en-28-oic$ acid (maslinic acid, 4). Compounds 3 and 4 were isolated for the first time from this plant. Also, compounds 1, 2 and 3 exhibited relatively high platelet aggregation inhibitory activity with the $IC_{50}$ values of 0.24, 0.09 and 0.07 mM, respectively. Compound 2 significantly prolonged activated partial thromboplastin time (aPTT) with the value of $124{\pm}11.2$ seconds as compared to the control with the value of $37.5{\pm}2.2$ seconds at the concentration of 50 ${\mu}g/ml$. Compounds 1 and 3 revealed inhibitory activity on farnesyl protein transferase (FPTase) with the $IC_{50}$ values of 0.49 and 0.24 mM and compounds 1 and 2 highly inhibited the growth of rat-H-ras cells with the $Gl_{50}$ values of 6.63 and 5.70 ${\mu}M$, respectively.

Effects of Thymol, Eugenol and Malate on In vitro Rumen Microbial Fermentation

  • Kim, Do-Hyung;Kim, Kyoung-Hoon;Choi, Chang-Won;Hong, Seong-Koo;Seol, Yong-Joo;Kwon, Eung-Gi;Kim, Wan-Young;Nam, In-Sik;Lee, Sung-Sill;Oh, Young-Kyoon
    • Journal of Animal Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.511-520
    • /
    • 2009
  • The purpose of this study was to investigate effects of increased levels of eugenol, thymol and malate on pH and the concentrations of VFA, lactate and ammonia-N during in vitro ruminal incubation. One Hanwoo beef steer (741 kg) fitted with a rumen cannula was used and fed 0.5 kg/day rice straw and 10 kg/day corn-based concentrate (ratio of concentrate to rice straw = 95 : 5 on DM basis). Three different doses of thymol, eugenol and malate were used. Treatments of the experiment were as follows: Treatments of thymol were control (1g D-glucose/40ml), T1 (1g D-glucose + 40 mg thymol/40 ml), T2 (1g D-glucose + 50 mg thymol/40 ml) and T3 (1g D-glucose + 60 mg thymol/40 ml). Treatments of eugenol were control (1g D-glucose/40 ml), E1 (1g D-glucose + 55 mg eugenol/40 ml), E2 (1g D-glucose + 65 mg eugenol/40 ml) and E3 (1g D-glucose + 75 mg eugenol/40 ml). Treatments of malate were control (1g D-glucose/40ml), M1 (1g D-glucose + 25 mg malate/40ml), M2 (1g D-glucose + 50 mg malate/40 ml) and M3 (1g D-glucose + 100 mg malate/40 ml). The results of this study showed that eugenol and thymol have improved stability of the ruminal fermentation by decreasing lactic acid concentration and increasing ruminal pH. However, it inhibited the production of total VFA, acetate and propionate. Malate also improved stability of the ruminal fermentation by decreasing lactic acid concentration and increasing ruminal pH, but it had a very little effect on ruminal lactate concentrations and pH. On the other hand, malate did not decrease the concentrations of total VFA, acetate and propionate. Therefore, at the low ruminal pH expected in high-concentrate diets, thymol, eugenol, and malate are potentially useful in Hanwoo finishing diets. Further studies are necessary for determining the effectiveness of these additives on in vivo rumen fermentation and animal performance in Hanwoo finishing steers.

Eugenol suppresses inducible cyclooxygenase-2(COX-2) expressionin lipopolysaccharide-stimulated mouse macrophage cells.

  • Kim, Sun-Suk;Oh, O-Jin;Min, Hye-Young;Lee, Youngm-Kim;Lee, Sang-Kook
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2001.11a
    • /
    • pp.86-86
    • /
    • 2001
  • Based on the potential inhibitors of cyclooxygenase-2 (COX-2) as anti-inflammatory or cancer chemopreventive agents, we have evaluated the active principles of COX-2 inhibition from natural products. The methanol extract of the cortex of Eugenia caryoplyllata (Myrtaceae) showed the potent inhibition of prostaglandin E$_2$(PGE$_2$) production in lipopolysaccharide (LPS)-activated RAW 264.7 cells (98.3% inhibition at the test concentration of 10 $\mu\textrm{g}$/$m\ell$) Further, hexane-soluble layer was the most active partition compared to ethyl acetate, n-butanol, and water -soluble parts. By bioassay-guided fractionation of hexane-soluble layer, eugenol was isolated and exhibited a significant suppression of PGE$_2$ production (IC$\_$50/=0.06$\mu\textrm{g}$/$m\ell$). In addition, eugenol suppressed the COX-2 gene expression in LPS-stimulated mouse macrop-hage cells. Therfore, eugenol might be a plausible lead candidate for further developing the COX-2 inhibitor as an anti-inflammatory or cancer chemopreventive agent.

  • PDF

In vitro Screening of Essential Oil Active Compounds for Manipulation of Rumen Fermentation and Methane Mitigation

  • Joch, M.;Cermak, L.;Hakl, J.;Hucko, B.;Duskova, D.;Marounek, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.7
    • /
    • pp.952-959
    • /
    • 2016
  • The objective of this study was to investigate the effects of 11 active compounds of essential oils (ACEO) on rumen fermentation characteristics and methane production. Two trials were conducted. In trial 1, ACEO (eugenol, carvacrol, citral, limonene, 1,4-cineole, p-cymene, linalool, bornyl acetate, ${\alpha}$-pinene, and ${\beta}$-pinene) at a dose of $1,000{\mu}L/L$ were incubated for 24 h in diluted rumen fluid with a 70:30 forage:concentrate substrate (16.2% crude protein; 36.6% neutral detergent fiber). Three fistulated Holstein cows were used as donors of rumen fluid. The reduction in methane production was observed with nine ACEO (up to 86% reduction) compared with the control (p<0.05). Among these, only limonene, 1,4-cineole, bornyl acetate, and ${\alpha}$-pinene did not inhibit volatile fatty acid (VFA) production, and only bornyl acetate produced less methane per mol of VFA compared with the control (p<0.05). In a subsequent trial, the effects on rumen fermentation and methane production of two concentrations (500 and $2,000{\mu}L/L$) of bornyl acetate, the most promising ACEO from the first trial, were evaluated using the same in vitro incubation method that was used in the first trial. In trial 2, monensin was used as a positive control. Both doses of bornyl acetate decreased (p<0.05) methane production and did not inhibit VFA production. Positive effects of bornyl acetate on methane and VFA production were more pronounced than the effects of monensin. These results confirm the ability of bornyl acetate to decrease methane production, which may help to improve the efficiency of energy use in the rumen.

Glycosidically Bound Volatile Components in Apricot (Prunus armeniaca var. ansu Max.) (살구에서 배당체의 형태로 존재하는 휘발성 성분)

  • Kim, Young-Hoi;Kim, Kun-Soo;Park, Joon-Young;Kim, Yong-Tae
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.549-554
    • /
    • 1990
  • Glycosidically bound fraction was separated from apricot by Amberlite XAD-2 adsorption and eluted with methanol. Aglycones were liberated from the bound fraction by enzymatic hydrolysis, acid hydrolysis or by means of simultaneous distillation-extraction at pH 3.0. A total of 40 components were identified in three bound volatile fractions. Besides linalool oxide, linalool. ${\alpha}-terpineol$, nerol, geraniol, benzyl alcohol and 2-phenylethyl alcohol, previously reported as glycosidically bound volatiles, the following components were identified for the first time as glycosidically bound volatiles in apricot: 2,6-dimethyl-3,7-octadiene-2,6-diol , 3.7-dimethyl-1,5-octadiene-3,7-diol, (E)- and (Z)-2.6-dimethyl-2,7-octadiene-1,6-diol, $3,4-didehydro-{\beta}-ionol,\;3-oxo-{\alpha}-ionol$, $3-hydroxy-7,8-dihydro-{\beta}-ionol,\;3-oxo-7,8-dihydro-{\alpha}-ionol ,\;3-hydroxy-{\beta}-ionone$, eugenol, 4-hydroxyethylphenyl acetate and 2,3-dihydrobenzofuran.

  • PDF

Headspace Hanging Drop Liquid Phase Microextraction and Gas Chromatography-Mass Spectrometry for the Analysis of Flavors from Clove Buds

  • Jung, Mi-Jin;Shin, Yeon-Jae;Oh, Se-Yeon;Kim, Nam-Sun;Kim, Kun;Lee, Dong-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.231-236
    • /
    • 2006
  • A novel sample pretreatment technique, headspace hanging drop liquid phase microextraction (HS-LPME) was studied and applied to the determination of flavors from solid clove buds by gas chromatography-mass spectrometry (GC-MS). Several parameters affecting on HS-LPME such as organic solvent drop volume, extraction time, extraction temperature and phase ratio were investigated. 1-Octanol was selected as the extracting solvent, drop size was fixed to 0.6 $\mu$L. 60 min extraction time at 25 ${^{\circ}C}$ was chosen. HS-LPME has the good efficiency demonstrated by the higher partition equilibrium constant ($K_{lh}$) values and concentration factor (CF) values. The limits of detection (LOD) were 1.5-3.2 ng. The amounts of eugenol, $\beta$-caryophyllene and eugenol acetate from the clove bud sample were 1.90 mg/g, 1.47 mg/g and 7.0 mg/g, respectively. This hanging drop based method is a simple, fast and easy sample enrichment technique using minimal solvent. HSLPME is an alternative sample preparation method for the analysis of volatile aroma compounds by GC-MS.