DOI QR코드

DOI QR Code

In vitro Screening of Essential Oil Active Compounds for Manipulation of Rumen Fermentation and Methane Mitigation

  • Joch, M. (Institute of Animal Science, Prague Uhrineves) ;
  • Cermak, L. (Institute of Animal Science, Prague Uhrineves) ;
  • Hakl, J. (Department of Forage Crops and Grassland Management, Czech University of Life Sciences) ;
  • Hucko, B. (Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences) ;
  • Duskova, D. (Institute of Animal Science, Prague Uhrineves) ;
  • Marounek, M. (Institute of Animal Science, Prague Uhrineves)
  • Received : 2015.06.01
  • Accepted : 2015.10.08
  • Published : 2016.07.01

Abstract

The objective of this study was to investigate the effects of 11 active compounds of essential oils (ACEO) on rumen fermentation characteristics and methane production. Two trials were conducted. In trial 1, ACEO (eugenol, carvacrol, citral, limonene, 1,4-cineole, p-cymene, linalool, bornyl acetate, ${\alpha}$-pinene, and ${\beta}$-pinene) at a dose of $1,000{\mu}L/L$ were incubated for 24 h in diluted rumen fluid with a 70:30 forage:concentrate substrate (16.2% crude protein; 36.6% neutral detergent fiber). Three fistulated Holstein cows were used as donors of rumen fluid. The reduction in methane production was observed with nine ACEO (up to 86% reduction) compared with the control (p<0.05). Among these, only limonene, 1,4-cineole, bornyl acetate, and ${\alpha}$-pinene did not inhibit volatile fatty acid (VFA) production, and only bornyl acetate produced less methane per mol of VFA compared with the control (p<0.05). In a subsequent trial, the effects on rumen fermentation and methane production of two concentrations (500 and $2,000{\mu}L/L$) of bornyl acetate, the most promising ACEO from the first trial, were evaluated using the same in vitro incubation method that was used in the first trial. In trial 2, monensin was used as a positive control. Both doses of bornyl acetate decreased (p<0.05) methane production and did not inhibit VFA production. Positive effects of bornyl acetate on methane and VFA production were more pronounced than the effects of monensin. These results confirm the ability of bornyl acetate to decrease methane production, which may help to improve the efficiency of energy use in the rumen.

Keywords

References

  1. Agarwal, N., C. Shekhar, R. Kumar, L. C. Chaudhary, and D. N. Kamra. 2009. Effect of peppermint (Mentha piperita) oil on in vitro methanogenesis and fermentation of feed with buffalo rumen liquor. Anim. Feed Sci. Technol. 148:321-327. https://doi.org/10.1016/j.anifeedsci.2008.04.004
  2. AOAC. 1995. Official Methods of Analysis. 16th edn. Association of Official Analytical Chemists, Arlington, VA, USA.
  3. AOAC. 2005. Official Methods of Analysis. 18th edn. Association of Official Analytical Chemists, Arlington, VA, USA.
  4. Beauchemin, K. A., M. Kreuzer, F. O'Mara, and T. A. McAllister. 2008. Nutritional management for enteric methane abatement: A review. Aust. J. Exp. Agric. 48:21-27. https://doi.org/10.1071/EA07199
  5. Benchaar, C., A. V. Chaves, G. R. Fraser, K. A. Beauchemin, and T. A. McAllister. 2007. Effects of essential oils and their components on in vitro rumen microbial fermentation. Can. J. Anim. Sci. 87:413-419. https://doi.org/10.4141/CJAS07012
  6. Busquet, M., S. Calsamiglia, A. Ferret, M. D. Carro, and C. Kamel. 2005. Effect of garlic oil and four of its compounds on rumen microbial fermentation. J. Dairy Sci. 88:4393-4404. https://doi.org/10.3168/jds.S0022-0302(05)73126-X
  7. Busquet, M., S. Calsamiglia, A. Ferret, and C. Kamel. 2005. Screening for effects of plant extracts and active compounds of plants on dairy cattle rumen microbial fermentation in a continuous culture system. Anim. Feed Sci. Technol. 123-124:597-613. https://doi.org/10.1016/j.anifeedsci.2005.03.008
  8. Calsamiglia, S., M. Busquet, P. W. Cardozo, L. Castillejos, and A. Ferret. 2007. Invited review: Essential oils as modifiers of rumen microbial fermentation. J. Dairy Sci. 90:2580-2595. https://doi.org/10.3168/jds.2006-644
  9. Castillejos, L., S. Calsamiglia, and A. Ferret. 2006. Effect of essential oil active compounds on rumen microbial fermentation and nutrient flow in in vitro systems. J. Dairy Sci. 89:2649-2658. https://doi.org/10.3168/jds.S0022-0302(06)72341-4
  10. Castillejos, L., S. Calsamiglia, A. Ferret, and R. Losa. 2007. Effects of dose and adaptation time of a specific blend of essential oil compounds on rumen fermentation. Anim. Feed Sci. Technol. 132:186-201. https://doi.org/10.1016/j.anifeedsci.2006.03.023
  11. Chaves, A. V., M. L. He, W. Z. Yang, A. N. Hristov, T. A. Mcallister, and C. Benchaar. 2008. Effects of essential oils on proteolytic, deaminative and methanogenic activities of mixed ruminal bacteria. Can. J. Anim. Sci. 88:117-122. https://doi.org/10.4141/CJAS07061
  12. Custodio, J. B. A., M. V Ribeiro, F. S. G. Silva, M. Machado, and M. C. Sousa. 2011. The essential oils component p -cymene induces proton leak through Fo-ATP synthase and uncoupling of mitochondrial respiration. J. Exp. Pharmacol. 3:69-76.
  13. Davidson, P. M. and A. S. Naidu. 2000. Phyto-phenols. In: Natural Food Antimicrobial Systems (Ed. A. S. Naidu). CRC Press, Boca Raton, FL, USA. pp. 265-293.
  14. Dorman, H. J. D. and S. G. Deans. 2000. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J. Appl. Microbiol. 88:308-316. https://doi.org/10.1046/j.1365-2672.2000.00969.x
  15. Garcia-Gonzalez, R., S. Lopez, M. Fernandez, R. Bodas, and J. S. Gonzalez. 2008. Screening the activity of plants and spices for decreasing ruminal methane production in vitro. Anim. Feed Sci. Technol. 147:36-52. https://doi.org/10.1016/j.anifeedsci.2007.09.008
  16. Getachew, G., P. H. Robinson, E. J. DePeters, and S. J. Taylor. 2004. Relationships between chemical composition, dry matter degradation and in vitro gas production of several ruminant feeds. Anim. Feed Sci. Technol. 111:57-71. https://doi.org/10.1016/S0377-8401(03)00217-7
  17. Gunal, M., A. Ishlak, and A. A. Abughazaleh. 2013. Evaluating the effects of six essential oils on fermentation and biohydrogenation in in vitro rumen batch cultures. Czech J. Anim. Sci. 558:243-252.
  18. Hristov, A. N., J. K. Ropp, S. Zaman, and A. Melgar. 2008. Effects of essential oils on in vitro ruminal fermentation and ammonia release. Anim. Feed Sci. Technol. 144:55-64. https://doi.org/10.1016/j.anifeedsci.2007.09.034
  19. Jager, W. 2009. Metabolism of terpenoids in animal models and humans. In: Handbook of Essential Oils:Science, Technology, and Applications (Eds. K. H. C. Baser and G. Buchbauer). CRC Press, Boca Raton, FL, USA. pp. 209-234.
  20. Klevenhusen, F., A. Muro-Reyes, R. Khiaosa-ard, B. U. Metzler-Zebeli, and Q. Zebeli. 2012. A meta-analysis of effects of chemical composition of incubated diet and bioactive compounds on in vitro ruminal fermentation. Anim. Feed Sci. Technol. 176:61-69. https://doi.org/10.1016/j.anifeedsci.2012.07.008
  21. Lin, B., J. H. Wang, Y. Lu, Q. Liang, and J. X. Liu. 2013. In vitro rumen fermentation and methane production are influenced by active components of essential oils combined with fumarate. J. Anim. Physiol. Anim. Nutr. 97:1-9.
  22. Martinez-Fernandez, G., L. Abecia, A. I. Martin-Garcia, E. Ramos-Morales, G. Hervas, E. Molina-Alcaide, and D. R. Yanez-Ruiz. 2013. In vitro-in vivo study on the effects of plant compounds on rumen fermentation, microbial abundances and methane emissions in goats. Animal 7:1925-1934. https://doi.org/10.1017/S1751731113001699
  23. McDougall, E. I. 1948. Studies on ruminant saliva: 1. The composition and output of sheep's saliva. Biochem. J. 43:99-109. https://doi.org/10.1042/bj0430099
  24. McIntosh, F. M., P. Williams, R. Losa, R. J. Wallace, D. A. Beever, and C. J. Newbold. 2003. Effects of essential oils on ruminal microorganisms and their protein metabolism. Appl. Environ. Microbiol. 69:5011-5014. https://doi.org/10.1128/AEM.69.8.5011-5014.2003
  25. Mertens, D. R. 2002. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: collaborative study. J. AOAC Int. 85:1217-1240.
  26. Nagaraja, T. G., C. J. Newbold, C. J. van Nevel, and D. I. Demeyer. 1997. Manipulation of ruminal fermentation. In: The Rumen Microbial Ecosystem (Eds. P. N. Hobson and C. S. Stewart). Springer, Dordrecht, Netherlands. pp. 523-632.
  27. Oh, H. K., T. Sakai, M. B. Jones, and W. M. Longhurst. 1967. Effect of various essential oils isolated from douglas fir needles upon sheep and deer rumen microbial activity. Appl. Microbiol. 15:777-784.
  28. Patra, A. K. and Z. Yu. 2012. Effects of essential oils on methane production and fermentation by, and abundance and diversity of, rumen microbial populations. Appl. Environ. Microbiol. 78:4271-4280. https://doi.org/10.1128/AEM.00309-12
  29. Raal, A., A. Orav, E. Arak, T. Kailas, and M. Muurisepp. 2007. Variation in the composition of the essential oil of Valeriana officinalis L. roots from Estonia. Proc. Estonian. Acad. Sci. Chem. 56:67-74.
  30. Stewart, C. S., H. J. Flint, and M. P. Bryant. 1997. The rumen bacteria. In: The Rumen Microbial Ecosystem (Eds. P. N. Hobson and C. S. Stewart). Springer, Dordrecht, Netherlands. pp. 10-72.
  31. Suzuki, Y., H. Sakai, T. Shimada, M. Omura, S. Kumazawa, and T. Nakayama. 2004. Characterization of $\gamma$-terpinene synthase from Citrus unshiu (Satsuma mandarin). BioFactors 21:79-82. https://doi.org/10.1002/biof.552210115
  32. Turner, G., J. Gershenzon, E. E. Nielson, J. E. Froehlich, and R. Croteau. 1999. Limonene synthase, the enzyme responsible for monoterpene biosynthesis in peppermint, is localized to leucoplasts of oil gland secretory cells. Plant Physiol. 120:879-886. https://doi.org/10.1104/pp.120.3.879

Cited by

  1. Effects of pure plant secondary metabolites on methane production, rumen fermentation and rumen bacteria populations in vitro vol.102, pp.4, 2018, https://doi.org/10.1111/jpn.12910
  2. Essential oils from Lippia turbinata and Tagetes minuta persistently reduce in vitro ruminal methane production in a continuous-culture system vol.59, pp.4, 2019, https://doi.org/10.1071/AN17469
  3. Effects of oregano essential oil on in vitro ruminal fermentation, methane production, and ruminal microbial community vol.103, pp.3, 2020, https://doi.org/10.3168/jds.2019-16611
  4. The Reduction of Methane Production in the In Vitro Ruminal Fermentation of Different Substrates is Linked with the Chemical Composition of the Essential Oil vol.10, pp.5, 2016, https://doi.org/10.3390/ani10050786
  5. Effects of Replacing Extruded Maize by Dried Citrus Pulp in a Mixed Diet on Ruminal Fermentation, Methane Production, and Microbial Populations in Rusitec Fermenters vol.10, pp.8, 2016, https://doi.org/10.3390/ani10081316
  6. Effects of Three Herbs on Methane Emissions from Beef Cattle vol.10, pp.9, 2016, https://doi.org/10.3390/ani10091671
  7. Evaluation of dietary addition of 2 essential oils from Achillea moschata, or their components (bornyl acetate, camphor, and eucalyptol) on in vitro ruminal fermentation and microbial community compos vol.7, pp.1, 2016, https://doi.org/10.1016/j.aninu.2020.11.001
  8. 왕대의 첨가수준이 반추위 in vitro 발효성상과 메탄 발생량에 미치는 영향 vol.29, pp.2, 2021, https://doi.org/10.11625/kjoa.2021.29.2.241