• 제목/요약/키워드: ethylene formation

Search Result 341, Processing Time 0.027 seconds

A Comparative Study of Radiation and Gas Sterilization. (방사선항균법과 개스항균법의 비교연구)

  • 정해원;유영수
    • Journal of Environmental Health Sciences
    • /
    • v.8 no.1
    • /
    • pp.81-97
    • /
    • 1982
  • Ethylene oxide gas has been used as a cold sterilant for heat-sensitive medical equipments and as a fumigant for food for more than 30 years, and it is used more widely than radiation although radiation sterilization has made significant inroads in recent years. But according to recent studies of toxicities such as mutagenicity, haemolytic effect and possible carcinogenicity of Ethylene oxide (ETO) and its two main reaction products, Ethylene chlorohydrin (ETCH) and Ethylene glycol (ETG), Environmental Protection Agency in U.S.A. has suggested some regulations on residual gas in drug products and medical devices for human use. The mutagenic activity of ETO compared with that of X-ray has an equivalency of 1 ppm/hr for ETO as compared to 20 mrad for X-ray, and one could suggest the present maximum allowable concentration for ETO (50 ppm) should be 400 times lower than the radiation standard (2.5 mrad/hr). Although radiation sterilization has advantages of simplicity of operation and complete reliability, changes of physico-chemical properties with possible formation of toxic substances may occur. It is therefore necessary to make some regulations of our own for residual toxicities orginated from each sterilization method.

  • PDF

Spectroscopic Analysis on Hydroquinone Clathrates for an Application to Storage/Recovery of Olefin Compounds (올레핀 저장/회수 기술 응용을 위한 하이드로퀴논 크러스레이트의 분광학적 분석 연구)

  • Lee, Jong-Won;Pratik, Dotel;Kang, Seong-Pil
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.5
    • /
    • pp.437-443
    • /
    • 2013
  • Clathrate samples, using hydroquinone as a host and ethylene or propylene as a possible guest, were prepared and analyzed by means of spectroscopic measurements. Obtained results showed that ethylene can form clathrate compounds with hydroquinone at 4.0MPa and room temperature, while propylene cannot form clathrate compounds. Different formation behaviors of these two olefin compounds can be applied to a clathrate-based storage/recovery of ethylene in a selective way, and can provide useful information on the cavity size of the formed clathrate compounds.

Numerical Study on Soot Formation in Opposed-flow Nonpremixed Flame by Mixing Toluene (톨루엔 혼합에 따른 대향류 확산화염 내 매연 생성에 대한 수치적 연구)

  • Choi, Jae-Hyuk;Yoon, Seok-Hun;Yoon, Doo-Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.2
    • /
    • pp.139-144
    • /
    • 2012
  • A numerical simulation has been performed to investigate effects of toluene mixing on soot formation in pure ethylene opposed-flow nonpremixed flame. Mixture ratios of toluene were 3%, 5%, 10%, and 20%. Senkin code for 0-D simulation and oppdif code for 1-D simulation based on CHEMKIN III were utilized. 0-D results by senkin showed that concentrations of methyl radicals and benzene were increased with increasing toluene mixture ratio. This implied that the mixing of toluene in pure ethylene diffusion flame produces more PAHs and soot than those of pure ethylene flame. 1-D result of 10 % toluene reaction by oppdif code showed that production rate for H radical was a crucial factor for benzene formation. These results imply that methyl radical, benzene and H radical play a important role on soot formation in diffusion flames.

Soot and PAH Formation Characteristic of Concentric Co-Flow Diffusion Flames (이중동축류 확산화염에서의 매연 및 PAH 생성 특성)

  • Lee, Won-Nam;Nam, Youn-Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.178-185
    • /
    • 2005
  • The synergistic effect of ethylene/propane mixture on soot formation is studied experimentally using a concentric co-flow diffusion burner, which provides the stratified fuel mixture. The soot volume fraction, soot particle diameter, number density and PAH concentrations are measured with various fuel supply configurations and compared to the homogeneously mixed case. When propane is supplied through the inner nozzle, an increase of soot formation is observed. However, when propane is supplied through the outer nozzle, a decrease is observed. The reaction path of PAH's formed from the pyrolysis process of propane is likely to be responsible to the observed differences. When propane is supplied through the outer nozzle, PAH's are formed in the relatively near oxidation region and exposed to the oxidization environment; on the other hand, when propane is supplied through the inner nozzle, PAH's are not likely to be oxidized and thus get involved in soot formation process. The synergistic effect in ethylene/propane diffusion flames is found to be affected not only by the com position of the mixture but also by the way of mixing.

A Study on Formation of Hemoglobin Adduct in Blood of Mice Inhaled with Ethylene Oxide (에틸렌옥사이드에 폭로된 흰쥐의 혈액에 형성된 헤모글로빈 부가체에 대한 연구)

  • Lee Jin-Heon;Shin Ho-Sang;Ahn Hye-Sil
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.2 s.89
    • /
    • pp.164-170
    • /
    • 2006
  • Ethylene oxide is a genotoxic carcinogen with widespread uses as industrial chemical intermediate and gaseous sterilant. 2-hydroxyethylated N-terminal valine in Hb is a good biomarker for biological monitoring of ethylene oxide exposure, because of its stability. For measuring the hemoglobin adduct formed by exposure of ethylene oxide, we studied the determination of (N-2-hydroxy-ethyl)valine(HEV) in hemoglobin adduct by using GC/MS. Firstly we synthesized HEV with 2-amino-ethanol and bromoisovaleric acid(BIVA) and confirmed it with GC/MS-FID. Its fragmentations were m/z 116(base ion, M+-45) and m/z 130(M+-31). For measuring HEV with higher sensitivity, we use derivatives which were PFPITH(pentafluorophenylisothiocianate) and TBDMS (tributyldimethylsilylation) by using Edman procedure. Its fragmentation were m/z 425(M+-57), m/z 383(M+-99) and m/z 172(M+-310) by using GC/MS. We did biological monitoring for mice inhalation exposure with 400 ppm ethylene oxide. The concentrations of hemoglobin adduct were $168{\pm}3.8\;and\;512{\pm}04$(nmol g-1 globin) at 0.5 hr/day 400 ppm ethylene oxide inhalation exposure group, and $631{\pm}17\;and\;2265{\pm}9.4$(nmol g-1 globin) at 1.0 hr/day 400 ppm ethylene oxide inhalation exposure for 1 and 4 weeks, respectively. We confirmed that (N-2-hydroxy-ethyl)valine(HEV) of hemoglobin was a good biomarker for biomonitoring of ethylene oxide exposure, and can measured with derivatives such as PFPITH(pentafluorophenylisothiocianate) and TBDMS(tributyldimethylsilylation) by using GC/MS.

Cholesteryl N-Monomethoxypoly(ethylene glycol)-succinate-L-phenylalanine: Synthesis and Effect on Liposomes

  • Yang, Won-Young;Lee, Sang-Hee;Lee, Eun-Ok;Chung, Guk-Hoon;Lee, Youn-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.1
    • /
    • pp.93-97
    • /
    • 2002
  • Poly(ethylene glycol)-phosphatidylethanolamine conjugate (PEG-PE) has been used in preparing longcirculating liposomes. As a substitute for PEG-PE which can also be used in the long-circulating liposome formualtions, but can be prepared more readily with a lower cost, PEG-Phe-Chol was synthesized from PEG, phenylalanine, and cholesterol. The addition of the PEG derivative to distearoylphosphatidylcholine (DSPC) led to the formation of mixed micelles as well as liposomes when the derivative content was 10 mol% or greater. On the other hand, the addition of just 5 mol% PEG-Phe-Chol to dioleoylphosphatidylethanolamine (DOPE) generated mixed micelles as well as liposomes, but the formation of mixed micelles was completely inhibited by the addition of cholesterol. The leakage of entrapped calcein out of DOPE/cholesterol (7/3) liposomes containing 5 mol% PEG-Phe-Chol was about 45% during the incubation time for 24 h in 50% rabbit plasma, which was similar to that of the same liposomes containing 5 mol% PEG-dipalmitoylphosphatidylethanolamine (DPPE) under the identical conditions.

Surfactant-Free Microspheres of Poly(${\varepsilon}-caprolactone$)/Poly(ethylene glycol)/Poly(${\varepsilon}-caprolactone$) Triblock Copolymers as a Protein Carrier

  • Sun, Sang-Wook;Jeong, Young-Il;Kim, Sung-Ho
    • Archives of Pharmacal Research
    • /
    • v.26 no.6
    • /
    • pp.504-510
    • /
    • 2003
  • The aim of this study is to prepare biodegradable microspheres without the use of surfactants or emulsifiers for a novel sustained delivery carriers of protein drugs. A poly($\varepsilon$-caprolactone)/poly(ethylene glycol)/poly($\varepsilon$-caprolactone) (CEC) triblock copolymer was synthesized by the ring-opening of $\varepsilon$-caprolactone with dihydroxy poly (ethylene glycol) to prepare surfactant-free microspheres. When dichloromethane (DCM) or ethyl formate (EF) was used as a solvent, the formation of microspheres did not occur. Although the microspheres could be formed prior to lyophilization under certain conditions, the morphology of microspheres was not maintained during the filtration and lyophilization process. Surfactant-free microspheres were only formed when ethyl acetate (EA) was used as the organic solvent and showed good spherical micro-spheres although the surfaces appeared irregular. The content of the protein in the micro-sphere was lower than expected, probably because of the presence of water channels and pores. The protein release kinetics showed a burst release until 2 days and after that sustained release pattern was showed. Therefore, these observations indicated that the formation of microsphere without the use of surfactant is feasible, and, this the improved process, the protein is readily incorporated in the microsphere.

Effect of Photosynthesis on Ozone-Induced Ethylent Evolution from Tomato Plants (토마토 식물에 있어서 광합성이 유존유동성의 에틸렌 생성에 미치는 영향)

  • 배공영
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.3
    • /
    • pp.307-314
    • /
    • 1996
  • The rate of evolution of ethylent by tomato plants was rapidly increased by ozone fumigation. In the present study, the mechanism of ethylent evolution by ozone was investigated in experiments with aminoethoxyvinylglycine (AVG) and tiron, which inhibit the formation of ethylene and peroxidation of lipids, respectively. Pretreatment with AVG significantly inhibited the ozone-induced ethylent evolution, but the treatment of plants with tiron did not inhibit. These results indicate that the induction of the evolution of ethylene by ozone involves the pathway via aminocyclopropane-1-carboxylate (ACC), while not released as a result of the peroxidation of lipids. Ozone-induced ethylent evolution was greater in dar- than light-incubated, intact tomato plants. The difference between dark- and light-ethylene evolution was examined with diuron, an inhibitor of photosynthetic electron transport. The inhibitor treatment promoted ethylent evolution. These results suggest that ethylent retention and metabolism in plants were regulated by internal $CO_2$ levels which, in turn, were controlled in large part by photosynthesis. Thus, ethylene was retained in illuminated leaf tissue under low intenal $CO_2$ concentration which may develop in a sealed container without exogenously supplied $CO_2$.

  • PDF

Arabidopsis ACC Oxidase 1 Coordinated by Multiple Signals Mediates Ethylene Biosynthesis and Is Involved in Root Development

  • Park, Chan Ho;Roh, Jeehee;Youn, Ji-Hyun;Son, Seung-Hyun;Park, Ji Hye;Kim, Soon Young;Kim, Tae-Wuk;Kim, Seong-Ki
    • Molecules and Cells
    • /
    • v.41 no.10
    • /
    • pp.923-932
    • /
    • 2018
  • Ethylene regulates numerous aspects of plant growth and development. Multiple external and internal factors coordinate ethylene production in plant tissues. Transcriptional and post-translational regulations of ACC synthases (ACSs), which are key enzymes mediating a rate-limiting step in ethylene biosynthesis have been well characterized. However, the regulation and physiological roles of ACC oxidases (ACOs) that catalyze the final step of ethylene biosynthesis are largely unknown in Arabidopsis. Here, we show that Arabidopsis ACO1 exhibits a tissue-specific expression pattern that is regulated by multiple signals, and plays roles in the lateral root development in Arabidopsis. Histochemical analysis of the ACO1 promoter indicated that ACO1 expression was largely modulated by light and plant hormones in a tissue-specific manner. We demonstrated that point mutations in two E-box motifs on the ACO1 promoter reduce the light-regulated expression patterns of ACO1. The aco1-1 mutant showed reduced ethylene production in root tips compared to wild-type. In addition, aco1-1 displayed altered lateral root formation. Our results suggest that Arabidopsis ACO1 integrates various signals into the ethylene biosynthesis that is required for ACO1's intrinsic roles in root physiology.

Soot and PAH Formation in Counterflow Diffusion Flames of Ethylene-Propane (에틸렌/프로판 대향류 확산화염에서 PAH 와 매연의 생성특성)

  • Yoon, Seung-Suk;Lee, Sang-Min;Hwang, Jun-Young;Chung, Suk-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.6
    • /
    • pp.817-822
    • /
    • 2002
  • Sooting characteristics of counterflow ethylene/propane mixture flames have been experimentally studied to investigate the fuel structure effect on PHM and soot formation. Laser-induced incandescene and laser-induced fluorescene techniques were employed to measure soot volume fraction and polycyclic aromatic hydrocarbon (PAH) concentration, respectively. Importance of $C_{3-}$species on PAH growth as well as the H-abstraction-C$_2$ $H_2$addition (HACA) mechanism has been emphasized, considering that PAH growth rate is greater for with mixed fuel than fer pure fuel flames. It was also confirmed that HACA pathways are the dominant soot growth mechanism. A new PAH growth model including both $C_{2-}$ and $C_{3-}$growth mechanisms is proposed based on the experimental results.