DOI QR코드

DOI QR Code

Cholesteryl N-Monomethoxypoly(ethylene glycol)-succinate-L-phenylalanine: Synthesis and Effect on Liposomes

  • Yang, Won-Young (School of Chemical Engineering and Technology, The Research Institute of Industrial Technology, Chonbuk National University) ;
  • Lee, Sang-Hee (Department of Chemistry, Kunsan National University) ;
  • Lee, Eun-Ok (Bio-Chem BG. Biotech.) ;
  • Chung, Guk-Hoon (Bio-Chem BG. Biotech.) ;
  • Lee, Youn-Sik (School of Chemical Engineering and Technology, The Research Institute of Industrial Technology, Chonbuk National University)
  • Published : 2002.01.20

Abstract

Poly(ethylene glycol)-phosphatidylethanolamine conjugate (PEG-PE) has been used in preparing longcirculating liposomes. As a substitute for PEG-PE which can also be used in the long-circulating liposome formualtions, but can be prepared more readily with a lower cost, PEG-Phe-Chol was synthesized from PEG, phenylalanine, and cholesterol. The addition of the PEG derivative to distearoylphosphatidylcholine (DSPC) led to the formation of mixed micelles as well as liposomes when the derivative content was 10 mol% or greater. On the other hand, the addition of just 5 mol% PEG-Phe-Chol to dioleoylphosphatidylethanolamine (DOPE) generated mixed micelles as well as liposomes, but the formation of mixed micelles was completely inhibited by the addition of cholesterol. The leakage of entrapped calcein out of DOPE/cholesterol (7/3) liposomes containing 5 mol% PEG-Phe-Chol was about 45% during the incubation time for 24 h in 50% rabbit plasma, which was similar to that of the same liposomes containing 5 mol% PEG-dipalmitoylphosphatidylethanolamine (DPPE) under the identical conditions.

Keywords

References

  1. Gregoriadis, G. TIBTECH DECEMBER 1995, 13, 527 https://doi.org/10.1016/S0167-7799(00)89017-4
  2. Liposomes as Drug Carriers: Recent Trends and Progress; Gregoriadis, G., Ed.; John Wiley and Sons: Chichester, 1988
  3. Hwang, K. J. In Liposomes: From Biophysics to Therapeutics; Ostro, M. J., Ed., Dekker, M.: New York, 1984; pp 109-156
  4. Mori, A.; Klibanov, A. L.; Torchilin, V. P.; Huang, L. FEBS 1991, 284, 263 https://doi.org/10.1016/0014-5793(91)80699-4
  5. Parr, M. J.; Ansell, S. M.; Choi, L. S.; Cullis, P. R. Biochim. Biophys. Acta 1994, 1195, 21 https://doi.org/10.1016/0005-2736(94)90004-3
  6. Maruyama, K.; Takizawa, T.; Yuda, T.; Kennel, S. J.; Haung, L.; Iwatsuru, M. Biochim. Biophys. Acta 1995, 1234, 74 https://doi.org/10.1016/0005-2736(94)00263-O
  7. Torchilin, V. P.; Papisov, M. I. J. Liposome Res. 1994, 4, 725 https://doi.org/10.3109/08982109409037068
  8. Allen, T. M.; Hansen, C.; Martin, F.; Redemann, C.; Yau-Young, A. Biochim. Biophys. Acta 1991, 1066, 29 https://doi.org/10.1016/0005-2736(91)90246-5
  9. Jin, J. Y.; Lee, Y.-S. Bull. Korean Chem. Soc. 1998, 19, 645 https://doi.org/10.1007/BF02699311
  10. Lee, Y.-S.; Kim, U.-J.; Lee, K.-H.; Yu, S.-C.; Lee, S. H. Bull. Korean Chem. Soc. 1999, 20, 1085 https://doi.org/10.1007/BF02706941
  11. Koynova, R.; Koumanov, A.; Tenchov, B.; Biochim. Biophys. Acta 1996, 1285, 101 https://doi.org/10.1016/S0005-2736(96)00155-1
  12. Grenier, G.; Berube, G.; Gicquaud, C.; Chem. Pharm. Bull. 1998, 46, 1480 https://doi.org/10.1248/cpb.46.1480
  13. Bedu-Addo, F. K.; Tang, P.; Xu, Y.; Huang, L. Pharm. Res. 1996, 13, 718 https://doi.org/10.1023/A:1016043431778
  14. Litzinger, D. C.; Huang, L. Biochim. Biophys. Acta 1992, 1113, 201 https://doi.org/10.1016/0304-4157(92)90039-D
  15. Slepushkin, V. A.; Simoes, S.; Dazin, P.; Newman, M. S.; Guo, L. S.; de Lima, M. C. P.; Duzgunes, N. J. Biol. Chem. 1997, 272, 2382 https://doi.org/10.1074/jbc.272.4.2382
  16. Torchilin, V. P.; Omelyanenko, V. G.; Papisov, M. L.; Bogdanov Jr., A. A.; Trubetskoy, V. S.; Herron, J. N.; Gentry, C. A. Biochim. Biophys. Acta 1994, 1195, 11 https://doi.org/10.1016/0005-2736(94)90003-5
  17. Shimada, K.; Matsuo, S.; Sadzuka, Y.; Miyagishima, A.; Nozawa, Y.; Hirota, S.; Sonobe, T. Intl. J. Pharm. 2000, 203, 255 https://doi.org/10.1016/S0378-5173(00)00466-X