• Title/Summary/Keyword: ethylene formation

Search Result 339, Processing Time 0.027 seconds

A New Alkalophilic Bacterium Producing Ethylene

  • Bae, Moo;Kim, Mi-Ye
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.3
    • /
    • pp.212-214
    • /
    • 1997
  • A new isolate, Bacillus sp. ALK-7 can synthesize ethylene from l-aminocyclopropane-l-carboxylic acid (ACC) as well as from methionine. The ACC has only been recognized as a key intermediate found in the metabolic pathway leading to ethylene formation in various plants. The efficiency of ethylene formation from the ACC by Bacillus sp. ALK-7 was about 2 times as high as that from the methionine. The reaction from ACC to ethylene formation was also shown to be mediated by the cell-free extracts of Bacillus sp. ALK-7.

  • PDF

Effects of Oxidant Addition to Fuel on Soot Formation of Laminar Diffusion Flames (동축류 확산화염의 매연생성에 미치는 연료에 첨가된 산화제의 영향)

  • Lee, Won-Nam
    • Journal of the Korean Society of Combustion
    • /
    • v.3 no.1
    • /
    • pp.11-19
    • /
    • 1998
  • The influence of oxidant addition on soot formation is investigated experimentally with ethylene, propane and mixture fuel co-flow diffusion flames. Oxidant addition into fuel shows the increase of integrated soot volume fractions for ethylene, ethylene/ethane and ethylene/methane mixture flames. However, the increase of integrated soot volume fraction with oxidant addition was not significant for propane and ethylene/propane mixture flames. This discrepancy is explained with $C_2\;and\;C_3$ chemistry at the early stage of soot formation process. The oxidant addition increases the concentration of $C_3H_3$ in the soot formation region, and therefore, enhances soot formation process. A new soot formation rate model that includes both dilution effect and chemical effect of oxygen is suggested to interpret the increase of integrated soot volume fractions with oxidant addition into ethylene. Also, the role of adiabatic flame temperature for the chemical effect of oxygen addition into fuel was reviewed. The influence of oxidant or diluent addition into fuel on soot formation process are the fuel dilution effect, the adiabatic flame temperature altering effect and/or the chemical effect of oxygen. Their relative importance could change with fuel structure and adiabatic flame temperature.

  • PDF

Soot Formation Characteristics of Concentric Ethylene/Propane Co-flow Diffusion Flames (층상구조 에틸렌/프로판 동축류화염의 매연 생성 특성)

  • Lee, Won-Nam;Koo, Bon-Seung
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.27-34
    • /
    • 2001
  • The soot formation characteristics have been studied experimentally in concentric co-flow ethylene/propane diffusion flames. Comparing to the homogeneously mixed propane/ethylene case, the increase of soot formation is observed when propane is supplied through the outer nozzle, while the decrease is observed when propane is supplied through the inner nozzle. The reaction path of PAHs formed from the pyrolysis process of propane is likely to be responsible to the observed difference. When propane is supplied through the outer nozzle, PAHs formed during the combustion process are easy to be exposed to the oxidization environment; however, when propane is supplied through the inner nozzle, PAHs are not likely to be oxidized and thus get involved in soot formation process. The synergistic effect in ethylene/propane diffusion flames is affected not only by the composition of mixture but also by the way of mixing.

  • PDF

Soot Formation Characteristics of Concentric Diffusion Flames with Mixture Fuels (이중동축류 화염을 이용한 혼합연료의 매연생성 특성에 관한 연구)

  • Lee, Won-Nam
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.123-128
    • /
    • 2002
  • The synergistic effect of ethylene/propane and ethylene/methane mixtures on soot formation is studied experimentally with a concentric co-flow burner. The integrated soot volume fractions, laser light scattering signal and PAH concentrations are measured for different fuel supply configurations. The synergistic effect in ethylene/propane diffusion flames is found to be affected not only by the composition of mixture but also by the way of mixing. Comparing to the homogeneously mixed ethylene/propane case, the increase of soot formation is observed when propane is supplied through the inner nozzle, while the decrease is observed when propane is supplied through the outer nozzle. However, the measured PAH concentration distributions are inconsistent with the current view of the synergistic effect of ethylene./propane mixture on soot formation. Virtually no synergistic effect is observed in ethylene-methane flames regardless of the fuel supply configuration, which suggests the important role of $C_3$ species produced during the propane pyrolysis process for the synergistic effect.

  • PDF

Effect of Fuel Mixing on PAH and Soot Formation in Counterflow Diffusion Flames (다양한 연료의 혼합에 따른 대향류 확산화염에서의 PAH 및 매연생성 특성)

  • Yoon, S.S.;Lee, S.M.;Chung, S.H.
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.3
    • /
    • pp.8-14
    • /
    • 2003
  • In order to investigate the effect of fuel mixing on PAH and soot formation, four species of methane, ethane, propane and propene have been mixed in counterlfow ethylene diffusion flame. Laser-induced incandescene and laser-induced fluorescene techniques were employed to measure soot volume fraction and polycyclic aromatic hydrocarbon (PAH) concentration, respectively. Results showed that the mixing of ethane (or propane) in ethylene diffusion flame produces more PAHs and soot than those of propene. Considering that propene directly dehydrogenates to propargyl radical, this behavior implied that the enhancement of PAH and soot formation by the fuel mixing of ethylene and ethane (or propane) cannot be explained solely by propargyl radical directly dehydrogenated from ethane (or propane). Thus, combination reactions between C1 and C2-species for the formation of propargyl was suggested to identify the synergistic effect occurring in the flames of ethylene and propane (or ethane) mixtures.

  • PDF

Analysis of Soot Formation Characteristics in Diffusion Flames with Soot Particle Temperature Measurement (매연입자 온도 측정에의한 확산화염의 매연생성 특성 해석)

  • Lee, Won-Nam;Chung, Young-Hyun
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.241-249
    • /
    • 1999
  • Soot particle temperatures in co-flow diffusion flames have been measured using a two-color pyrometry at the pressure of 0.2 MPa(2 atm). The measured soot particle temperatures along with the integrated soot volume fractions are analyzed to understand soot formation characteristics. At 0.2 MPa, the addition of small amount of air into ethylene do not change the soot particle temperature in soot formation regions. This result showed that the increase of soot formation with addition of air is mostly due to the chemical effect of the added air, such as the increased role of C3 chemistry during the early stage of soot inception process. The addition of sufficient air into ethylene, however, changes soot particle temperatures and the understanding of soot formation characteristics becomes complicated. Measured soot particle temperatures also showed that there is no significant temperature effect for the synergistic effect of ethylene/propane mixture on soot formation.

  • PDF

PAH and Soot Formation Characteristics of DME/Ethylene Fuel (DME/에틸렌 연료의 PAH 및 매연의 생성 특성)

  • Yoon, Seung-Suk;Lee, Sang-Min;Chung, Suk-ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.171-177
    • /
    • 2005
  • In order to investigate the effect of dimethyl ether (DME) on PAH and soot formation, the fuel has been mixed to the counter-flow diffusion flames of ethylene. Laser-induced incandescence and laser-induced fluorescence techniques were employed to measure relative concentrations of soot volume fraction and polycyclic aromatic hydrocarbon (PAH) concentration, respectively. Results showed that even though pure DME flame produces the minimal amount of PAH and soot, the mixture fuel of DME and ethylene could increase PAH and soot formation, as compared to those of pure ethylene flame. This implies that even though DME has been known to be a clean fuel for soot formation, the mixture fuel of DME and the hydrocarbon fuel could produce enhanced production of soot. Numerical simulation demonstrated that methyl (CH$_{3}$) radical generated by the initial pyrolysis of DME can be contributed to the enhancement of PAH and soot formation, through the formation of propargyl (C$_{3}$H$_{3}$) radical.

Development of functional microsphere (I) - Formation and characteristics of poly(ethylene-co-vinyl acetate) microspheres via thermally induced phase separation - (기능성 마이크로스피어의 개발 (I) - 열유도 상분리에 의한 Poly(ethylene-co-vinyl acetate) 마이크로스피어의 제조와 특성 -)

  • 이신희;김효정;박수민
    • Textile Coloration and Finishing
    • /
    • v.15 no.4
    • /
    • pp.57-64
    • /
    • 2003
  • Poly(ethylene-co-vinyl acetate)(EVA) microspheres were prepared by a thermally induced phase separation. The microsphere formation occurred by the nucleation and growth mechanism in the metastable region. The diluent used was toluene. The microsphere formation and growth was followed by the cloud point of the optical microscope measurement. The microsphere size distribution, which was obtained by SEM observation and particle size analyzer, became broader when the polymer concentration was higher, the content of vinyl acetate in EVA copolymer was higher, and the cooling rate of EVA copolymer solution was lower.

Development of functional microsphere(II) - Formation and Characteristics of Poly(ethylene-co-vinylacetate) Microsphere with Pigment - (기능성 마이크로스피어의 개발(II) - 안료를 함유한 에틸렌-비닐아세테이트 공중합체의 마이크로스피어 제조와 특성 -)

  • Lee, Shin-Hee;Park, Soo-Min
    • Textile Coloration and Finishing
    • /
    • v.17 no.4 s.83
    • /
    • pp.15-20
    • /
    • 2005
  • Poly(ethylene-co-vinylacetate)(EVA) microspheres were prepared by thermally induced phase separation in toluene. The microsphere formation occurred by the nucleation and growth mechanism in metastable region. The effects of the polymer or pigment weight percentage and cooling rate on microsphere formation were investigated. The microsphere formation and growth were followed by the cloud point of the optical microscope measurement. The microsphere size distribution, which was obtained by particle size analyzer, became broader when the polymer concentration was higher, the pigment concentration and the cooling rate of EVA copolymer solution were lower.

A Study on Effect of n-heptane Mixing on PAH and Soot Formation in Counterflow Ethylene Diffusion Flames (대향류 에틸렌 확산화염내 PAH 및 매연의 생성에 미치는 n-헵탄 혼합의 영향에 관한 연구)

  • Choi, Jae-Hyuk;Han, Won-Hui
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.1
    • /
    • pp.55-60
    • /
    • 2012
  • In order to investigate the effect of n-heptane mixing on PAH and soot formation, small amount of n-heptane has been mixed in counterflow ethylene diffusion flame. Laser-induced incandescene and laser-induced fluorescene techniques were employed to measure soot volume fraction and polycyclic aromatic hydrocarbon(PAH) concentration, respectively. Results showed that the mixing of n-heptane in ethylene diffusion flame produces more PAHs and soot than those of pure ethylene flame. However, signals of LIF for 20% n-heptane mixture flame were lower than that of pure ethylene flame. It can be considered that the enhancement of PAH and soot formation by the n-heptane mixing of ethylene can be explained by methyl($CH_3$) radical in the low temperature region. And it can be found that reaction rate of H radical for 10% n-heptane plays a crucial role for benzene formation.