• 제목/요약/키워드: ethanol metabolism

검색결과 323건 처리시간 0.027초

Ethanol이 Trichloroethylene 대사효소의 활성도와 유도성에 미치는 영향 (Effects of Ethanol on the Activities and Inducibility of Trichloroethylene Metabolic Enzyme System in Rat Liver)

  • 김기웅;강성규;조영숙;이세휘;문영한;최병순;박상신
    • Journal of Preventive Medicine and Public Health
    • /
    • 제28권1호
    • /
    • pp.141-152
    • /
    • 1995
  • This study was performed to find out the influences of ethanol on the metabolism of trichloroethylene(TRI) in rats. TRI in corn oil at the dosage of 150, 300, 600 mg/kg was injected peritoneally once a day for two days to two groups. In one group ethanol(4 g/kg) was taken orally 30 minutes before TRI injection, and the other group ethanol was not. The results of experiments are as follows: 1. The contents of cytochrome P-450 and $b_5$ had inverse relationship with in-jected TRI amounts in both groups. 2. The activity of NADPH P-450 reductase was decreased slowly in TRI injected group related with TRI amount, but decreased drastically in the group pretreated with ethanol. 3. The activity of NADH $b_5$ reductase had relationship with injected nt amount , but the statistical significance was found only in the groups of 300 and 600 mg/kg of TRI injected without relevance to ethanol when compared with the group that was not injected. 4. The activity of ADH was more decreased and ALDH activity was more increased in groups that TRI injected and ethanol was pretreated with ethanol groups than in group without any treatment. These results suggest that ethanol may inhibit epoxide formulation, the first step of TRI metabolism, and change from TCE-OH to TCA also.

  • PDF

Mapping of Carbon Flow Distribution in the Central Metabolic Pathways of Clostridium cellulolyticum: Direct Comparison of Bacterial Metabolism with a Soluble versus an Insoluble Carbon Source

  • DESVAUX, MICKAEL,
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권6호
    • /
    • pp.1200-1210
    • /
    • 2004
  • Metabolic flux analysis was established by adapting previous stoichiometric model developed during growth with cellulose to cell grown with cellobiose for further direct comparison of the bacterial metabolism. In carbon limitation with cellobiose, a shift from acetate-ethanol fermentation to ethanol-lactate fermentation is observed and the pyruvate overflow is much higher than with cellulose. In nitrogen limitation with cellobiose, the cellodextrin and exopolysaccharide overflows are much higher than on cellulose. In carbon and nitrogen saturation with cellobiose, the cellodextrin, exopolysaccharide, and free amino acids overflows reach the highest levels observed but all remain limited on cellulose. By completely shunting the cellulosome, the use of cellobiose allows to reach much higher carbon consumption rates which, in return, highlights the metabolic limitation of C. cellulolyticum. Therefore, the physical nature of the carbon source has a profound impact on the metabolism of C. cellulolyticum and most probably of other cellulolytic bacteria. For cellulolytic bacteria, the use of soluble carbon substrate must carefully be taken into consideration for the interpretation of results. Direct comparison of metabolic flux analysis from cellobiose and cellulose revealed the importance of cellulosome, phosphoglucomutase and pyruvate-ferredoxin oxidoreductase in the distribution of carbon flow in the central metabolism. In the light of these findings, future directions for improvement of cellulose catabolism by this bacterium are discussed.

Effects of amino acids on ethanol metabolism and oxidative stress in the ethanol-perfused rat liver

  • Park, Yeong-Chul;Oh, Se-In;Lee, Mee-Sook;Park, Sang-Chul
    • 한국환경성돌연변이발암원학회지
    • /
    • 제16권1호
    • /
    • pp.13-18
    • /
    • 1996
  • One mechanism of free-radical production by ethanol is suggested to be through the intracellular conversion of XDH to XO by increased ratio of NADH to NAD. The major mechanism for physiological compensation of cytosolic NADH/NAD balance is the malate/aspartate shutfie. Therefore, it is important to develop the method to improve the efficiency of malate/aspartate shuttle in ethanol metabolism. In the present study, various amino acids and organic acid involved in the shuttle were tested for their functional efficiency in modulating shuttle in the ethanol-perfused rat liver. The rate of ethanol oxidation in the liver perfused with aspartate alone or aspartate in combination with pyruvate, respectively, was increased by about 10% compared to control liver, but not in the tissues perfused with glummate, cysteine or pyruvate alone. Though glummate, cysteine and pyravate did not affect the ethanol oxidation significanfiy, they showed some suppresive effect on the ethanol-induced radical generation monitored by protein carbonylation analysis. Among the tested components, aspartate is confirmed to be the most efficient as a metabolic regulator for both ethanol oxidation and ethanol-induced oxidative stress in our perfusion system. These effects of aspartate would result from NAD recycling by its supplementation through the coupled aspartate aminotransferase/malate dehydrogenase reactions and the malate-aspartate shuttle.

  • PDF

The Extract of Limonium tetragonum Protected Liver against Acute Alcohol Toxicity by Enhancing Ethanol Metabolism and Antioxidant Enzyme Activities

  • Kim, Na-Hyun;Sung, Sang Hyun;Heo, Jeong-Doo;Jeong, Eun Ju
    • Natural Product Sciences
    • /
    • 제21권1호
    • /
    • pp.54-58
    • /
    • 2015
  • The protective effect of EtOAc fraction of Limonium tetragonum extract (EALT) against alcohol-induced hepatotoxicity was assessed following acute ethanol intoxication in Spraque-Dawley rats. EALT (200 mg/kg p.o.) was administrated once before alcohol intake (8 g/kg, p.o.). Blood ethanol concentration, and the activities of alcohol metabolic enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) in the liver were measured. Also, the formation of malondialdehyde (MDA) and the activities of antioxidant enzymes, superoxide dismutase (SOD), glutathione peroxidase (GSH-px), catalase were determined after acute alcohol exposure. Pretreatment of rats received ethanol with EALT significantly decreased blood ethanol concentration and elevated the activities of ADH and ALDH in liver. The increased MDA level was decreased, and the reduced activities of SOD, GSH-px and catalase were markedly preserved by the treatment with EALT. This study suggests that EALT prevent hepatic injury induced by acute alcohol which is likely related to its modulation on the alcohol metabolism and antioxidant enzymes activities.

Effects of Fruit Extract Drink on Alcohol Metabolic Enzymes in Ethanol-treated Rats

  • Kim, Sung-Su
    • 대한의생명과학회지
    • /
    • 제20권3호
    • /
    • pp.124-128
    • /
    • 2014
  • Alcoholism is a significant global health problem. Alcohol dehydrogenase and aldehyde dehydrogenase play important roles in the metabolism of alcohol and aldehyde. In this study, we aimed to investigate the eliminatory effects of a fruit extract drink on alcohol metabolism in drunken Sprague-Dawley (SD) rats. Male SD rats were given a fruit extract drink or a commercial product (10 mL/kg) 30 min prior to 40% (5 g/kg) ethanol ingestion. To assay the effect of the fruit extract drink on blood ethanol concentration, blood samples were taken from the saphenous vein at 3 and 5 h after ethanol ingestion. The blood concentrations of alcohol, alcohol dehydrogenase, and aldehyde dehydrogenase were significantly lower in the fruit extract drink group than in the control group, in a time-dependent manner. However, the alanine aminotransferase and aspartate aminotransferase activities of all experimental groups were unaltered compared to those of the control group. These results suggested that fruit extract drink intake can have a positive effect on the reduction of alcohol, alcohol dehydrogenase, and aldehyde dehydrogenase concentrations in the blood and may alleviate acute ethanol-induced hepatotoxicity by altering alcohol metabolic enzyme activities.

Metabolic Engineering of Saccharomyces cerevisiae for Redox Balance of Xylose Fermentation

  • Kim, Soo Rin;Jin, Yong-Su
    • Current Research on Agriculture and Life Sciences
    • /
    • 제32권4호
    • /
    • pp.199-202
    • /
    • 2014
  • The bioconversion of cellulosic biomass hydrolyzates consisting mainly of glucose and xylose requires the use of engineered Saccharomyces cerevisiae expressing a heterologous xylose pathway. However, there is concern that a fungal xylose pathway consisting of NADPH-specific xylose reductase (XR) and $NAD^+$-specific xylitol dehydrogenase (XDH) may result in a cellular redox imbalance. However, the glycerol biosynthesis and glycerol degradation pathways of S. cerevisiae, termed here as the glycerol cycle, has the potential to balance the cofactor requirements for xylose metabolism, as it produces NADPH by consuming NADH at the expense of one mole of ATP. Therefore, this study tested if the glycerol cycle could improve the xylose metabolism of engineered S. cerevisiae by cofactor balancing, as predicted by an in-silico analysis using elementary flux mode (EFM). When the GPD1 gene, the first step of the glycerol cycle, was overexpressed in the XR/XDH-expressing S. cerevisiae, the glycerol production significantly increased, while the xylitol and ethanol yields became negligible. The reduced xylitol yield suggests that enough $NAD^+$ was supplied for XDH by the glycerol cycle. However, the GPD1 overexpression completely shifted the carbon flux from ethanol to glycerol. Thus, moderate expression of GPD1 may be necessary to achieve improved ethanol production through the cofactor balancing.

오미자 열매의 물추출물이 알콜대사에 미치는 효과 (Effects of Water Extracts in fruits of Omija (Schizandra chinensis Baillon) on Alcohol Metabolism)

  • 이정숙;이성우
    • 한국식생활문화학회지
    • /
    • 제5권2호
    • /
    • pp.259-263
    • /
    • 1990
  • To assess the effects of water extracts in fruits of Omija (Schizandra chinensis Baillon) on alcohol metabolism, rats were orally administrated with alcohol (25% alcohol, 0.75g/200g B.W., 40% alcohol, 0.8g/200g B.W.). The level of metabolites and enzyme activities of the serum and liver were unchanged by the 25% ethanol or 40% ethanol treatment with acute orally administration. Blood alcohol level was markdely decreased by the treatment with water extracts in fruits of Omija. The serum level of Urea nitrogen, Free fatty acid, GPT and LDH were tended to decreased, level of GOT was unchanged. Contents of hepatic microsomal protein, glycogen, pyruvate in the liver were increased by water extracts in fruits of Omija. In conclusion, the present study clearly demonstrates that water extract in fruits of Omija promotes the overall metabolism and detoxication of alcohol.

  • PDF

METABOLISM AND DISPOSITION OF CHLORZOXAZONE IN RATS: EFFECTS OF ETHANOL AND DISULFIRAM

  • Kim, Dong-Hyun;Park, Misuk;Park, Jongsei
    • Toxicological Research
    • /
    • 제9권1호
    • /
    • pp.35-44
    • /
    • 1993
  • Role of rat cytochrome P-450 2E1(P-450 2E 1) in the metabolism of chlorzoxazone was examined by using several approaches' (1) selective inhibiton of catalytic activity in rat liver microsomes by diethyldithiocarbamate, (2) correlation of dimethylnitrosomine N-demethylation with chlorzoxazone 6-hydroxylation, and (3) immunoinhibition of catalytic activity with rabbit anti-rat P-450. The results indicated that P-450 2E1 is responsible for the metabolism of chlorzoxazone.

  • PDF

마늘 육질과 껍질의 건분 및 에탄올추출물이 노령흰쥐의 지방대사와 항혈전능에 미치는 영향 (Effect of Dried Powders or Ethanol Extracts of Garlic Flesh and Peel on Lipid Metabolism and Antithrombogenic Capacity in 16-Month-Old Rats)

  • 신성희;김미경
    • Journal of Nutrition and Health
    • /
    • 제37권7호
    • /
    • pp.515-524
    • /
    • 2004
  • This study was performed to investigate effect of dried powders and ethanol extracts of garlic flesh and peel on lipid metabolism and antithrombogenic capacity in 16-month-old rats. Forty Sprague-Dawley male rats weighing 618.1$\pm$6.5 g were blocked into five groups according to body weight and raised for 3 months with control and experimental diets containing 5% (w/w) of dried powders of garlic flesh or peel, or ethanol extracts from equal amount of each dried powder and control diet. Plasma and liver total lipids, triglyceride and total cholesterol, and plasma HDL-cholesterol, throm-boxane $B_2$ (TX $B_2$), 6-keto-prostaglandin $F_{1a}$ (6-keto-PG $F_{1a}$) concentrations were measured. Total, insoluble and soluble dietary fibers contents were highest in peel powder followed by fresh powder, and those in ethanol extracts of flesh and peel, especially soluble, very low. Plasma and liver total lipids, triglyceride, and total cholesterol concentrations were lower in all the garlic experimental groups compared to Especially, flesh and peel powder lowered plasma total lipids, triglyceride and total cholesterol concentrations markedly, and flesh powder and flesh ethanol extract lowered liver total lipids, triglyceride and total cholesterol concentration remarkably. Plasma TX $B_2$ concentrations in garlic experimental groups were lower than that of control group, and 6-keto-PG $F_{1a}$ concentrations. In garlic experimental groups were higher than that of control group. Flesh ethanol extract group showed the lowest TX $B_2$ and the highest 6-keto-PG $F_{1a}$ concentrations among experimental groups, so TX $B_2$/6-keto-PG $F_{1a}$ ratio in flesh ethanol extract group was significantly lower than that of control group. Moreover, clotting time was significantly increased in flesh ethanol extract group as compared to control group. In conclusion, intakes of dried powders and ethanol extracts of garlic flesh and peel were effective in lowering lipid levels of liver and plasma. And also flesh ethanol extract diet was most effective in antithrombogenic activity among garlic experimental groups as TX $B_2$/6-keto-PG $F_{1a}$ ratio in flesh ethanol extract group was significantly lower and clotting time was significantly increased in this group as compared to control group.ntrol group.

무, 양파의 시료제조 방법에 따른 흰쥐의 지방대사와 항산화능에 관한 연구 (Effect of Dry Powders, Ethanol Extracts and Juices of Radish and Onion on Lipid Metabolism and Antioxidative Capacity in Rats)

  • 안소진;김미경
    • Journal of Nutrition and Health
    • /
    • 제34권5호
    • /
    • pp.513-524
    • /
    • 2001
  • This study was performed to investigate the effects of dry powders, ethanol extracts and juices of radish and onion on lipid metabolism, lipid peroxidation and antioxidative enzyme activity in rats. Forty-nine male Sprague-Dawley rats weighing 157$\pm$6g were blocked into seven groups according to body weight and raised for four weeks with diets containing 5%(w/w) dry powders of two different vegetables consumed frequently by Korean-radish(Raphanus sativus L.) and onion(Allium cepa L.), ethanol extracts and juices from equal amount of each dry powder. All the powders, ethanol extracts and juices of radish and onion decreased total lipids, triglycerides and total cholesterol concentrations in plasma and liver. Above all, onion ethanol extract decreased them most remarkably. It was thought that organosulfur compounds and flavonoids extracted from onion by ethanol inhibited biosynthesis and absorption of lipid and promoted degradation of lipid. Radish powder also decreased them by increasing fecal excretions of total lipids, triglycerides and total cholesterol most effectively. Catalase and glutathine peroxidase(GSH-px) activities in red blood cell(RBC) were most remarkably increased by radish powder and onion powder respectively. Superoxide dismutase(SOD), catalase and GSH-px activities in liver were most remarkably increased by onion ethanol extract, radish powder and onion ethanol extract respectively. Xanthine oxidase(XOD) activities in liver were most effectively decreased by ethanol extracts of radish and onion. Thiobarbituric acid reactive substance (TBARS) levels in plasma and liver of experimental groups were significantly lower than those of controls. Above all, onion powder decreased them most effectively. It was thought that vitamin E and high flavonoids in onion powder inhibited lipid peroxidation, promoting liver and RBC SOD, catalase and GSH-px activities and inhibiting XOD activities effectively. Flavonoids in onion ethanol extract inhibited lipid peroxidation, promoting three antioxident enzyme activities and inhibiting XOD activities most remarkably. Also flavonoids and high vitamin C in radish powder inhibited lipid peroxidation, promoting liver and RBC catalase most remarkably and inhibiting XOD activities. In conclusion, radish and onion were effective in lowering lipid levels and inhibiting of lipid peroxidation in animal tissue. From these data, radish and onion can be recommended in the treatment and prevention of diseases such as cardiovascular disease and cancer and in delaying aging. As ethanol from onion were most effective in lowering lipid level and promoting three antioxident enzymes, and inhibited lipid peroxidation as did we should try to utilize onion skin which is discarded though reported to have abundant flavonoids. (Korean J Nutrition 34(5) : 513~524, 2001)

  • PDF