• Title/Summary/Keyword: ethanol metabolism

Search Result 323, Processing Time 0.036 seconds

Study on the confirmation of drinking at the bloods & urines used 5-hydroxyindole-3-acetic acid and 5-hydroxytryptophol (5-Hydroxyindole-3-acetic acid와 5-hydroxytryptophol을 이용한 혈액 및 뇨에서 음주여부 확인에 관한 연구)

  • Kim, Myung-Duck;Kim, Young-Woon;Kwon, O-Sung;Park, Se-Youn;Kim, Eun-Ho
    • Analytical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.204-212
    • /
    • 2007
  • The study was carried out to investigate the ratio of ethanol to n-propanol in blood and urine specimens, and developed a method for distinguishing ingested ethanol from artifactual ethanol in urine samples. In case of no urinary ethanol was detected, the ratio of ethanol to n-propanol concentration was about 12~20 times higher than those of blood. Therefore, it might be a good method to determine whether the detected ethanol is from drinking or from microbial fermentation. During the metabolism of ethanol, the levels of the metabolite of serotonin (5-hydroxytryptamine, 5-HT) and 5-hydroxyindole-3-acetic acid (5-HIAA) were decreased, while 5-hydroxytryptophol (5-HTOL) was increased. The levels of 5-HTOL/5-HIAA in urine samples of drinking suspects were greater than 1, in that of no drinking suspects were less than 1.

Protective Effect of Isoliquiritigenin against Ethanol-Induced Hepatic Steatosis by Regulating the SIRT1-AMPK Pathway

  • Na, Ann-Yae;Yang, Eun-Ju;Jeon, Ju Mi;Ki, Sung Hwan;Song, Kyung-Sik;Lee, Sangkyu
    • Toxicological Research
    • /
    • v.34 no.1
    • /
    • pp.23-29
    • /
    • 2018
  • Ethanol-induced fat accumulation, the earliest and most common response of the liver to ethanol exposure, may be involved in the pathogenesis of liver diseases. Isoliquiritigenin (ISL), an important constituent of Glycyrrhizae Radix, is a chalcone derivative that exhibits antioxidant, anti-inflammatory, and phytoestrogenic activities. However, the effect of ISL treatment on lipid accumulation in hepatocytes and alcoholic hepatitis remains unclear. Therefore, we evaluated the effect and underlying mechanism of ISL on ethanol-induced hepatic steatosis by treating AML-12 cells with 200 mM ethanol and/or ISL ($0{\sim}50{\mu}M$) for 72 hr. Lipid accumulation was assayed by oil red O staining, and the expression of sirtuin1 (SIRT1), sterol regulatory element-binding protein-1c (SREBP-1c), AMP-activated protein kinase (AMPK), and peroxisome proliferator-activated receptor alpha ($PPAR{\alpha}$) was studied by western blotting. Our results indicated that ISL treatment upregulated SIRT1 expression and downregulated SREBP-1c expression in ethanol-treated cells. Similarly, oil red O staining revealed a decrease in ethanol-induced fat accumulation upon co-treatment of ethanol-treated cells with 10, 20, and $50{\mu}M$ of ISL. These findings suggest that ISL can reduce ethanol induced-hepatic lipogenesis by activating the SIRT1-AMPK pathway and thus improve lipid metabolism in alcoholic fatty livers.

Protective Effect of Dandelion Extracts on Ethanol-Induced Acute Hepatotoxicity in C57BL/6 Mice

  • Liu, Xiao-Yu;Ma, Jie;Park, Chung-Mu;Chang, Hee-Kyung;Song, Young-Sun
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.4
    • /
    • pp.269-275
    • /
    • 2008
  • Dandelion (Taraxacum officinale) has been widely used as an anti-inflammatory agent in oriental medicine. In the current study, we investigated the protective effect, and the possible mechanism, of dandelion extracts against ethanol-induced acute hepatotoxicity in C57BL/6 mice. Dandelion water and ethanol extract was administered at 2 g/kg body weight (BW) once daily for 7 consecutive days, whereas control and ethanol groups received water by gavage. Ethanol (50% ethanol; 6 g/kg BW) was administered 12 hr before sacrificing the mice in order to generate liver injury. Significantly increased serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities as well as liver triglyceride (TG) and cholesterol levels were attenuated by dandelion supplementation. In addition, dandelion extracts not only enhanced alcohol dehydrogenase (ADH) and anti-oxidative enzyme activities, but reduced lipid peroxidation. Cytochrome P450 2E1 (CYP 2E1), one of the critical enzymes xenobiotic metabolism, expression was lower with ethanol treatment but restored by dandelion supplementation. These results were confirmed by improved histopathological changes in fatty liver and hepatic lesions induced by ethanol. In conclusion, dandelion could protect liver against ethanol administration by attenuating of oxidative stress and inflammatory responses.

Ethanol Production from Xylulose by Saccharomyces cerevisiae (효모에의한 Xylulose로부터의 에탄올 생산)

  • 안동군;이광근서진호
    • KSBB Journal
    • /
    • v.7 no.1
    • /
    • pp.27-31
    • /
    • 1992
  • Xylose represents a major component of cellulosic materials. This paper describes patterns of ethanol fermentation by Saccharomyces cerevisiae from xylulose, which is an isomer of xylose. Special emphasis was placed on the effects of xylulose concentration and growth temperature on cell growth and ethanol yield. The maximum specific growth of $0.087 1/hr^{-1}$ was obtained at an initial xylulose concentration of 5 g/1. The ethanol yield was propotional to initial xylulose concentrations. A xylulose concentration of 16 g/l resulted in the maximum ethanol yield of 0.49 g EtOH/g xylulose, which corresponds to 90% of a theoretical value. It is interesting to nota that xylulose metabolism was accelerated by the presence of glucose as a carbon source.

  • PDF

PULMONARY XENOBIOTIC CONJUGATION IN THE ISOLATED PURFUSED RABBIT LUNG AND IN VITRO: EFFECT OF ETHANOL

  • Yang, C.Mierha;Carlson, Gary P.
    • Toxicological Research
    • /
    • v.7 no.2
    • /
    • pp.191-208
    • /
    • 1991
  • Pulmonary conjugation pathways may be important for the metabolism of xenobiotics introduced via airways of systemically. The objective of this study was to determine the pulmonary conjugating capacity in both the isolated perfused rabbit lung (IPRL) and in vitro, and the ability of ethanol to alter the above. The IPRL was capable of conjugating glutathione (GSH) with either 1-chloro-2,4-dinitrobenzene (CDNB) of 1,2-epoxy-(p-nitrophenoxy) propane(ENP). The pulmonary GSH conjugation with ENP was inhibited by cibacron blue, indicating the presence of glutathione-S-transferase (GST) u and/or classes, but it was not altered by buthionine sulfoximine, a selective inhibitor of Gamma-glutamylcysteine synthetase.

  • PDF

Effect of a Single Dichloromethane Administration on Drug Metabolizing Activity in Rats (랫트에서 이염화메탄 일회투여가 약물대사활성에 미치는 영향)

  • 윤혜은;김상겸;이희승;김영철
    • Toxicological Research
    • /
    • v.12 no.2
    • /
    • pp.265-270
    • /
    • 1996
  • Effects of a single administration of dichloromethane (DCM) on the hepatic drug metabollzing activity were determined using adult female rats. Rats were treated with DCM (3 mmol/kg, ip) and the disappearance of antipyrine (100 mg/kg, iv) or ethanol (2 g/kg, ip) from blood was measured. The blood concentration and half-life of antipyrine was not influenced by DCM administration. And DCM did not alter the blood concentration of ethanol measured for 240 min after the treatment. The effect of DCM treatment on in vitro cytochrome P-450-dependent enzyme activities was examined as well. No significant difference in either aniline hydroxylase or aminopyrine N-demethylase was observed in hepatic microsomal fractiorts of rats treated with DCM 24 hr prior to sacrifice. The present study indicates that acutely given DCM does not alter the metabolism of xenobiotics in vivo. The failure of DCM to alter the in vitro hepatic microsomal drug metabolizing activity was also noted.

  • PDF

Growth of Issatchenkia orientalis in Aerobic Batch and Fed-batch Cultures

  • Shin, Hyung-Tai;Lim, Yoo-Beom;Koh, Jong-Ho;Kim, Jong-Yun;Baig, Soon-Yong;Lee, Jae-Heung
    • Journal of Microbiology
    • /
    • v.40 no.1
    • /
    • pp.82-85
    • /
    • 2002
  • The aerobic batch growth of Issatchenkia orientalis DY252 with glucose and fructose medium was investigated at 32$\^{C}$ and pH 5.0. Aerobic ethanol production was evident with yeast I, orientalis. A diauxic lag of about 1 h between growth on glucose and growth on ethanol during batch culture was observed. However, no diauxic growth occurred with fructose. As the incubation temperature was increased from 32 to 39$\^{C}$, viability at the end of each batch culture declined significantly, from 93 to 43%, Unlike the effect of temperature, viability was not greatly affected by incubation pH, and cell yield values in a range of 0.45-0.48 were obtained. In order to overcome overflow metabolism, a fedbatch culture under glucose limitation was carried out. Compared with aerobic batch culture, about 10% improvement in cell yield was achieved with a fed-batch culture in optimal conditions.