• 제목/요약/키워드: etcher

검색결과 103건 처리시간 0.029초

Vibration Reduction of Spin Etcher

  • Rim, Kyung-Hwa;Lww, Eun-Kyung;Cho, Jung-Keun
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2002년도 추계학술대회 발표 논문집
    • /
    • pp.94-96
    • /
    • 2002
  • PDF

플라즈마 식각장치내 노즐의 위치에 따른 희박기체유동 및 알루미늄 식각률의 변화에 관한 연구 (Effects of Nozzle Locations on the Rarefied Gas Flows and Al Etch Rate in a Plasma Etcher)

  • 황영규;허중식
    • 대한기계학회논문집B
    • /
    • 제26권10호
    • /
    • pp.1406-1418
    • /
    • 2002
  • The direct simulation Monte Carlo(DSMC) method is employed to calculate the etch rate on Al wafer. The etchant is assumed to be Cl$_2$. The etching process of an Al wafer in a helicon plasma etcher is examined by simulating molecular collisions of reactant and product. The flow field inside a plasma etch reactor is also simulated by the DSMC method fur a chlorine feed gas flow. The surface reaction on the Al wafer is simply modelled by one-step reaction: 3C1$_2$+2Allongrightarrow1 2AIC1$_3$. The gas flow inside the reactor is compared for six different nozzle locations. It is found that the flow field inside the reactor is affected by the nozzle locations. The Cl$_2$ number density on the wafer decreases as the nozzle location moves toward the side of the reactor. Also, the present numerical results show that the nozzle location 1, which is at the top of the reactor chamber, produces a higher etch rate.

A Destruction Pattern Analysis of a Turbo-Molecular Pump According to the Foreline Clamp Damage in an ICP Dry Etcher for 300 mm Wafers

  • Jeong, Jinyong;Lee, Intaek;Joo, Junghoon
    • Applied Science and Convergence Technology
    • /
    • 제24권2호
    • /
    • pp.27-32
    • /
    • 2015
  • We analyzed the destruction patterns of a turbo-molecular pump (TMP) resulting from its sudden exposure of a foreline to the atmospheric pressure due to a destruction of the foreline connecting clamp of an ICP dry etcher for 300 mm wafers during high-vacuum operation ($5{\times}10^{-6}$ Torr). Unlike in the case of view port's breakage, the TMP's rotor module was crashed inside the chamber. The primary damage resulted from the collision of the blades and stators, and the secondary damage resulted from the breaking of the rotor - driving shaft assembly. The fixing screws of the rotor and axial shaft were bent and broken when the TMP controller output the maximum current even after the crash event. Electrical power consumption analysis of the TMP power controller confirmed it. The stress distributions were analyzed by a finite element method using CFD-ACE+ multi physics software. Rotating inertia of each parts and kinetic energies were calculated as well. 68% of the rotational kinetic energy is deposited by the rotor - shaft module.

ECR 플라즈마의 식각 공정변수에 관한 연구 (A Study on the Characteristics of Poly-Si Etching Process Parameter Using ECR Plasma)

  • 안무선;지철묵;김영진;윤송현;유가선
    • 한국진공학회지
    • /
    • 제1권1호
    • /
    • pp.37-42
    • /
    • 1992
  • 16M/64M DRAM 제조공정에 적용할 수 있는 ECR 방식의 플라즈마 etcher를 개발 하여 Poly-Si 식각공정에 적용하였다. 공정압력, 사용가스 및 초고주파 전력의 공정변수 변 화에 따른 Poly-Si의 식각율 및 선택비 변화를 조사하였다. 초고주파의 전력이 증가할수록 식각율과 Oxide에 대한 선택비가 증가하는 경향을 보였으며 6mT의 공정압력에서 최적치를 보였다. 공정가스 SF6/SF6 + Cl2의 값이 증가할수록 식각율 및 선택비의 감소가 있었으며 이는 최적 공정변수를 찾지 못하였기 때문으로 분석된다.

  • PDF

Modified Principal Component Analysis for In-situ Endpoint Detection of Dielectric Layers Etching Using Plasma Impedance Monitoring and Self Plasma Optical Emission Spectroscopy

  • Jang, Hae-Gyu;Choi, Sang-Hyuk;Chae, Hee-Yeop
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.182-182
    • /
    • 2012
  • Plasma etching is used in various semiconductor processing steps. In plasma etcher, optical- emission spectroscopy (OES) is widely used for in-situ endpoint detection. However, the sensitivity of OES is decreased if polymer is deposited on viewport or the proportion of exposed area on the wafer is too small. Because of these problems, the object is to investigate the suitability of using plasma impedance monitoring (PIM) and self plasma optical emission spectrocopy (SPOES) with statistical approach for in-situ endpoint detection. The endpoint was determined by impedance signal variation from I-V monitor (VI probe) and optical emission signal from SPOES. However, the signal variation at the endpoint is too weak to determine endpoint when $SiO_2$ and SiNx layers are etched by fluorocarbon on inductive coupled plasma (ICP) etcher, if the proportion of $SiO_2$ and SiNx area on Si wafer are small. Therefore, modified principal component analysis (mPCA) is applied to them for increasing sensitivity. For verifying this method, detected endpoint from impedance monitoring is compared with optical emission spectroscopy.

  • PDF