• Title/Summary/Keyword: etched surface

Search Result 750, Processing Time 0.033 seconds

The Study on the surface of SBT Thin Film after Etching in Ar/$CI_2$ Plasma (Ar/$CI_2$ 식각 후 SBT 박막의 표면에 관한 연구)

  • 김동표;김창일;이원재;유병곤;김태형;장의구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.363-366
    • /
    • 2000
  • In this study, SrBi$_2$Ta$_2$$O_{9}$ (SBT) thin films were etched at different Cl$_2$gas mixing ratio in Cl$_2$/Ar. The maximum etch rate of SBT was 883 $\AA$/min in Cl$_2$(20%)/Ar(80%). The result indicates that physical sputtering of charged particles is dominant to chemical reaction in etching SBT thin films. To evaluate the changes of morphology and crystallinity on the near surface of etched SBT, atomic force microscopy (AFM) and x-ray diffraction (XRD) were used. The rms values of etched samples in Ar only or Cl$_2$ only plasma were higher than that of as-deposited, Cl$_2$/Ar Plasma. The SBT (105) crystalinity of the etched samples decreased in Af only or Cla only plasma, but maintain constant in ClyAr plasma. This can be illustrated by a decrease of Bi content or nonvolatile etching products (Sr-Cl and Ta-Cl), resulting in the changes of stoichiometry on the etched surface of the SBT thin films. The decrease of Bi content and nonvolatile etch products were revealed by x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS).).

  • PDF

SHEAR BOND STRENGTH OF ORTHODONTIC BONDING RESINS TO PORCELAIN; AN IN VITRO STUDY (도재에 대한 교정용 브라켓 접착 레진의 전단접착강도에 관한 연구)

  • Ko, Jin-Hwan;Lee, Ki-Soo
    • The korean journal of orthodontics
    • /
    • v.22 no.1
    • /
    • pp.43-65
    • /
    • 1992
  • Bonding orthodontic adhesive resins to glazed porcelain surface is not attainable. The aim of this investigation was to examine, in vitro, the effect of three methods of porcelain surface pretreatment on the shear bond strength of orthodontic adhesives, and to compare the shear strength of orthodontic bracket bonding to porcelain surface by the best results that to human enamel. Porcelain disks ($Ceramco^{(TM)}$ and $Vita^{(TM)}$) baked in the laboratory were roughened by sandpapers, #320, #600, #800, #1000 and #1200, and were pretreated with silane and dried at the various temperatures, room temperature, $50^{\circ}C$, $70^{\circ}C$ and $90^{\circ}C$, and were etched by 3% hydrofluoric acid solution for 1, 3, 5, 7, and 9 minutes, orthodontic adhesives (System $1+^{(TM)}$ and $Unite^{(TM)}$) were applied on them, and shear bond strengths were measured by Instron. The best results of pretreatment of each method were determined by the shear bond strengths. Again, porcelain disks were pretreated by the determined best results and human enamel were etched by 37% hydrofluoric acid solution, orthodontic brackets were bonded on them by the orthodontic adhesives, and the shear bond strengths were measured and compared between them. 1. Roughening porcelain surfaces with coarse sandpaper (#300) showed higher shear bond strength than that with finer sandpapers, but it $(22.44Kgf/cm^2)$ was distinguishably low compared to that from etched human enamel $(144.11Kgf/cm^2)$. 2. There were disparities in shear bond strengths upon the orthodontic resins, which was presumably related to the contents of fillers in orthodontic adhesive resins. Also there were disparities in shear bond strength upon the porcelains which had different composition. 3. Silane enhanced the shear bond strength of orthodontic resins to porcelain surfaces ($25.20Kgf/cm^2$ at $50^{\circ}C$), which was markedly low compared to that from etched human enamel. 4. Etched porcelain surface with 3% hydrofluoric acid solution for 1 to 9 minutes showed no difference in shear bonding strength of orthodontic adhesive resins. Shear bond strength from etched porcelain $(97.43-120.72Kgf/cm^2)$ were as high as clinically available, but low compared to that from etched human enamel. 5. Roughening with #300 sandpaper and etching by 3% hydrofluoric acid followed silane application on porcelain surface showed lower shear bond strength than etched human enamel, but were as high as clinically useful. 6. The results suggest that etching porcelain surface by 3% hydrofluoric acid solution might provide comparatively high shear bond strength as much as clinically favorable.

  • PDF

Hydrophobic Properties of PTFE Film Deposited on Glass Surface Etched by Ar-plasma (아르곤 플라즈마를 이용하여 유리기판에 증착된 PTFE 박막의 초친수 특성 연구)

  • Rhee, Byung Roh;Bae, Kang;Kim, Hwa-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.8
    • /
    • pp.516-521
    • /
    • 2014
  • An excellent hydrophobic surface has a high contact angle over 147 degree and the contact angle hysteresis below $5^0$ was produced by using roughness combined with hydrophobic PTFE coatings, which were also confirmed to exhibit an extreme adhesion to glass substrate. To form the rough surface, the glass was etched by Ar-plasma. A very thin PTFE film was coated on the plasma etched glass surface. Roughness factors before or after PTFE coating on the plasma etched glass surface, based on Wensel's model were calculated, which agrees well with the dependence of the contact angle on the roughness factor is predicted by Wensel's model. The PTFE films deposited on glass by using a conventional rf-magnetron sputtering. The glass substrates were etched Ar-plasma prior to the deposition of PTFE. Their hydrophobicities are investigated for application as a anti-fouling coating layer on the screen of displays. It is found that the hydrophobicity of PTFE films mainly depends on the sputtering conditions, such as rf-power, Ar gas content introduced during deposition. These conditions are closely related to the deposition rate or thickness of PTFE film. Thus, it is also found that the deposition rate or the film thickness affects sensitively the geometrical morphology formed on surface of the rf-sputtered PTFE films. In particular, 1,950-nm-thick PTFE films deposited for 30 minute by rf-power 50 watt under Ar gas content of 20 sccm shows a very excellent optical transmittance and a good anti-fouling property and a good durability.

SnO2-Coated 3D Etched Cu Foam for Lithium-ion Battery Anode

  • Um, Ji Hyun;Kim, Hyunwoo;Cho, Yong-Hun;Yoon, Won-Sub
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.92-98
    • /
    • 2020
  • SnO2-based high-capacity anode materials are attractive candidate for the next-generation high-performance lithium-ion batteries since the theoretical capacity of SnO2 can be ideally extended from 781 to 1494 mAh g-1. Here 3D etched Cu foam is applied as a current collector for electron path and simultaneously a substrate for the SnO2 coating, for developing an integrated electrode structure. We fabricate the 3D etched Cu foam through an auto-catalytic electroless plating method, and then coat the SnO2 onto the self-supporting substrate through a simple sol-gel method. The catalytic dissolution of Cu metal makes secondary pores of both several micrometers and several tens of micrometers at the surface of Cu foam strut, besides main channel-like interconnected pores. Especially, the additional surface pores on etched Cu foam are intended for penetrating the individual strut of Cu foam, and thereby increasing the surface area for SnO2 coating by using even the internal of Cu foam. The increased areal capacity with high structural integrity upon cycling is demonstrated in the SnO2-coated 3D etched Cu foam. This study not only prepares the etched Cu foam using the spontaneous chemical reactions but also demonstrates the potential for electroless plating method about surface modification on various metal substrates.

THE EFFECTS OF SURFACE CONTAMINATION BY HEMOSTATIC AGENTS ON THE SHEAR BOND STRENGTH OF COMPOMER (지혈제 오염이 콤포머의 전단결합강도에 미치는 영향)

  • Heo, Jeong-Moo;Kwak, Ju-Seog;Lee, Hwang;Lee, Su-Jong;Im, Mi-Kyung
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.2
    • /
    • pp.150-157
    • /
    • 2002
  • One of the latest concepts in bonding are "total etch", in which both enamel and dentin are etched with an acid to remove the smear layers, and "wet dentin" in which the dentin is not dry but left moist before application of the bonding primer Ideally the application of a bonding agent to tooth structure should be insensitive to minor contamination from oral fluids. Clinically, contaminations such as saliva, gingival fluid, blood and handpiece lubricant are often encountered by dentists during cavity preparation. The aim of this study was to evaluate the effect of contamination by hemostatic agents on shear bond strength of compomer restorations. One hundred and ten extracted human maxillary and mandibular molar teeth were collected. The teeth were removed soft tissue remnant and debris and stored in physiologic solution until they were used. Small flat area on dentin of the buccal surface were wet ground serially with 400, 800 and 1200 abrasive papers on automatic polishing machine. The teeth were randomly divided into 11 groups. Each group was conditioned as follows : Group 1: Dentin surface was not etched and not contaminated by hemostatic agents. Group 2: Dentin surface was not etched but was contaminated by Astringedent$^{\circledR}$(Ultradent product Inc., Utah, U.S.A.) Group 3: Dentin surface was not etched but was contaminated by Bosmin$^{\circledR}$(Jeil Pharm, Korea.). Group 4: Dentin surface was not etched but was contaminated by Epri-dent$^{\circledR}$(Epr Industries, NJ, U.S.A.). Group 5: Dentin surface was etched and not contaminated by hemostatic agents. Group 6: Dentin sorface was etched and contaminated by Astringedent$^{\circledR}$. Group 7 : Dentin surface was etched and contaminated by Bosmin$^{\circledR}$. Group 8: Dentin surface was etched and contaminated by Epri-dent$^{\circledR}$. Group 9: Dentin surface was contaminated by Astringedent$^{\circledR}$. The contaminated surface was rinsed by water and dried by compressed air. Group 10: Dentin surface was contaminated by Bosmin$^{\circledR}$. The contaminated surface was rinsed by water and dried by compressed air. Group 11 : Dentin surface was contaminated by Epri-dent$^{\circledR}$. The contaminated surface was rinsed by water and dried by compressed air. After surface conditioning, F2000$^{\circledR}$ was applicated on the conditoned dentin surface The teeth were thermocycled in distilled water at 5$^{\circ}C$ and 55$^{\circ}C$ for 1,000 cycles. The samples were placed on the binder with the bonded compomer-dentin interface parallel to the knife-edge shearing rod of the Universal Testing Machine(Zwick Z020, Zwick Co., Germany) running at a cross head speed or 1.0 mm/min. Group 2 showed significant decrease in shear bond strength compared with group 1 and group 6 showed significant decrease in shear bond strength compared with group 5. There were no significant differences in shear bond strength between group 5 and group 9, 10 and 11.

Scanning Electron Microscopic Study of the Effects of Citric Acid on the Change of Implant Surface According to Application Time (구연산의 적용시간에 따른 임플란트 표면변화에 대한 주사전자현미경적 연구)

  • Song, Woo-Seok;Kwon, Young-Hyuk;Lee, Man-Sup;Park, Joon-Bong;Herr, Yeek
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.4
    • /
    • pp.697-709
    • /
    • 2002
  • The present study was performed to evaluate the effect of citric acid on the change of implant surface microstructure according to application time. Implants with pure titanium machined surface, titanium plasma-sprayed surface, and sand-blasted, large grit, acid etched surface were utilized. Implant surface was rubbed with pH 1 citric acid for $\frac{1}{2}$ min., 1 min., 1 $\frac{1}{2}$ min., 2 min., and 3min, respeaively in the test group and implant surface was not treated in the control group. Then, the specimens were processed for scanning electron microscopic observation. The following results were obtained. 1. Both test and control group showed a few shallow grooves and ridges in pure titanium machined surface implants. There were not significant differences between two groups. 2. In titanium plasma-sprayed surfaces, round or amorphous particles were deposited irregularly. The irregularity of titanium plasma-sprayed surfaces conditioned with pH 1 citric acid was lessened and the cracks were increased relative to the application time of pH 1 citric acid. 3. Sand-blasted, large grit, acid etched surfaces showed the macro/micro double roughness. The application of pH 1 citric acid didn't change the characteristics of the sand-blasted, large grit, acid etched surfaces. In conclusion, the application of pH 1 citric acid to titanium plasma-sprayed surface is improper. And pure titanium machined surface implants and sand-blasted, large grit, acid etched surface implants can he treated with pH 1 citric acid for peri-implantitis treatment if the detoxification of these surfaces could be evaluated.

Electrical characteristic and surface morphology of IBE-etched Silicon (이온빔 에칭된 실리콘의 전기적 특성 및 표면 morphology)

  • 지희환;최정수;김도우;구경완;왕진석
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.279-282
    • /
    • 2001
  • The IBE(ion beam etching)-induced Schottky barrier variation which depends on various etching history related with ion energy, incident angle and etching time has been investigated using voltage-current, capacitance-voltage characteristics of metal-etched silicon contact and morphology of etched surface were studied using AFM(atomic force microscope). For ion beam etched n-type silicons, Schottky barrier is reduced according to ion beam energy. It can be seen that amount of donor-like positive charge created in the damaged layer is proportional to the ion energy. By contrary, for ion beam etched p-type silicons, the Schottky barrier and specific contact resistance are both increased. Not only etching time but also incident angle of ion beam has an effect on barrier height. Taping-mode AFM analysis shows increased roughness RMS(Root-Mean-Square) and depth distribution due to ion bombardment. Annealing in an N$_2$ ambient for 30 min was found to be effective in improving the diode characteristics of the etched samples and minimum annealing temperatures to recover IBE-induced barrier variation were related to ion beam energy.

  • PDF

AN EXPERIMFNENTAL STUDY ON THE SURFACE ROUGHNESS OF ACID ETCHING ENAMEL SURFACE IN HUMAN TEETH (산부식처리(酸腐蝕處理) 치아법랑질(齒牙琺瑯質) 표면(表面)의 조도(粗度)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Lee, Eun-Goo
    • Restorative Dentistry and Endodontics
    • /
    • v.5 no.1
    • /
    • pp.13-18
    • /
    • 1979
  • The purpose of this study was to measure the roughness on the acid -etching surface. The etching agents of three-kinds composite resins were used to etch the tooth surface. Newly extracted I5-anterior teeth were invested with self-curing acrylic resin, and the labial surface was exposed. The exposed labial side was polished with abrasive papers and finally polished on polishing machine with zinc oxide powder. After the teeth were polished, the specimens were washed by water and dried by air. Surface roughness tester, Taylor-Habson's Taly Surf-10, (Fig-1) was used to measure roughness of this unetched tooth surface. And that, the specimens were divided into three groups. The first group was etched with Restodent etchant, the second group was etched with Nuva-system etchant, and Hi-pol etching agent was used in the third group. And the surface roughness tester was used to measure roughness of the etching teeth surface. The results obtained were as follows. 1. The roughness of acid-etched enamel were increased $2{\mu}m$ to $6{\mu}m$. 2. Hi-pol etchant produced the smoothest surface($2.3{\mu}m$). 3. Restodent etchant($3.8{\mu}m$) and Nuva-system etchant($3.7{\mu}m$) produced rougher surface than Hi-pol.

  • PDF

Effects of Chemical Etching with Sulfuric Acid on Glass Surface

  • Jang, H.K.;Chung, Y.L.;S.W.Whangbo;C.N.Whang;Lee, S.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.165-165
    • /
    • 2000
  • Glass slides were chemically etched with sulfuric acid using five different methods. we investigated the effects of the chemical etching conditions on such properties as chemical composition, surface roughness, and the thermal stability of the glass. Sodium and carbon atoms in the surface of the glass are effectively eliminated by chemical etching with sulfuric acid. The glass slides were boiled for 30 min in 95% sulfuric acid and were depth profiled at room temperature with X-ray photoelectron spectroscopy (XPS), the Na ls signal was not detected in the detection limit of XPS. Surface morphology of the glass was very different depending on the concentration of sulfuric acid. The surface of the glass etched with 50% sulfuric acid was rougher than that of glass etched with 95% sulfuric acid. The sodium concentration of the glass boiled for 30 min in 95% sulfuric acid was nearly zero at the glass surface, and the sodium composition changed very little with annealing temperatures up to 35$0^{\circ}C$ in a vacuum environment. However the sulfur concentration at the glass surface due to the sulfuric acid increased with increasing temperature.

  • PDF

3-Year Survival Analysis of RBM and Acid-Etched Surface Implants (RBM 표면 임플란트와 산부식 표면 임플란트의 3년 생존율에 대한 비교 연구)

  • Yoon, Dae-Woong;Kim, Moon-Seob;Jang, Han-Seung;Jin, Soo-Young;Mah, Deuk-Hyun;Jeong, Gyeong-Dal;Park, Hyun-Chun;Kim, Hee-Jung;Kim, Hak-Kyun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.27 no.4
    • /
    • pp.393-403
    • /
    • 2011
  • The purpose of this study was to analyze and compare survival rates of resorbable blast media(RBM) surface and acid-etched surface implants being usually used in clinics. RBM surface implants (USII, Osstem, Busan, Korea) or acid-etched surface implants ($Osseotite^{(R)}$, Biomet $3i^{[TM]}$, FL, USA) were placed in edentulous area of 140 patients between January of 2005 and March of 2007. The number of implants was 304, and 152 out of them were RBM surface implants while another 152 were acid-etched surface implants. According to the evaluation items, the survey was performed before and after the implants installations. The 3-year survival rates of both kind of implants were calculated. 1. Total of 152 RBM surface implants were placed. Among them, one implant was failed, which was implanted in the posterior mandible with D2 bone quality. The failure was resulted from fracture of the fixture. Others showed good results and survival rate of RBM surface implant was 99.34%. 2. Total of 152 acid-etched surface implants were placed. Seven implants of them were failed, thus, survival rate was 95.39%. The causes of the failures were considered as infection, overheat and the lack of initial stability. In this research, both implants showed good 3-year survival rate, although RMB surface implant represented a better result.