• Title/Summary/Keyword: estrogenic action

Search Result 18, Processing Time 0.02 seconds

Action Mechanism of Antiestrogens on Uterine Growth in Immature Rats (자궁세포 성장에 미치는 항에스트로젠제의 작용기전)

  • Lee, Jung-Bin;Yoon, Mi-Chung;Kim, Chang-Mee;Hong, Sa-Suk;Ryu, Kyung-Za
    • The Korean Journal of Pharmacology
    • /
    • v.26 no.2
    • /
    • pp.167-176
    • /
    • 1990
  • In the present study, we examined the effects of tamoxifen and LY117018 on various parameters for the estrogenic actions in order to understand the mechanism by which tamoxifen and LY117018 act on the uterine cells in 21-23 day old immature rats. Tamoxifen and LY117018 stimulated uterine weight and uterine contents of DNA, protein, and peroxidase activity in the absence of estradiol while inhibited above parameters in the presence of estradiol. Both cytosolic and nuclear progesterone receptors were increased by the treatment of tamoxifen and LY117018 as well as estradiol, but estradiol-induced increase in the progesterone receptors were reduced by the treatment of antiestrogens. These effects were enhanced by the multiple injections of antiestrogens. It seemed that tamoxifen was more agonistic than LY117018 but less antagonistic than LY117018, judged by their effects on various parameters for the estrogenic action. The affinities of estradiol, tamoxifen, and LY117018 for the estrogen receptor were $0.17{\pm}0.01nM(100%)$, $1.10{\pm}0.01nM(6.3%)$, and $0.23{\pm}0.01nM(77%)$, respectively. Furthermore, LY117018 was the competitive ligand for the estrogen receptor in dose-related manner but tamoxifen was not. Following estradiol treatment, nuclear estrogen receptor was sharply increased by 1 h, reaching the maximum by 16 h, while tamoxifen and LY117018 slightly increased nuclear estrogen receptor by 1 h and then decreased thereafter. It is therefore concluded that LY117018 is a competitive antagonist for the estrogen receptor with less estrogenic activity, compared to tamoxifen with low affinity to the estrogen receptor, and tamoxifen may act through other binding site than the estrogen receptor.

  • PDF

The Estrogenic Effects of Methoxychlor in Pubertal Female Rats: Establishment of Thyroid Assay for Endocrine Disruptors (사춘기 암컷 랫드에서 갑상선 시험에 의한 Methoxychlor의 에스트로젠 효과)

  • 정문구;김종춘;임광현
    • Toxicological Research
    • /
    • v.16 no.1
    • /
    • pp.27-31
    • /
    • 2000
  • Recently, there is a worldwide concern that a great number of man-made chemicals have a hormone-like action both in humans and in animals. EPA and OECD are developing screening programs using validated test systems to determine whether certain substances may have an effect on humans. In the present study, the establishment of in vivo short-term test system for pubertal female assay with thyroid to detect endocrine disrupting chemicals was tried using a model substance, methoxychlor (MC), a chlorinated hydrocarbon insencticide. Forty female rats were assigned to four groups. MC was administered at dose levels of 0, 8, 40 and 200mg/kg by gavage to female rats from day 21 post partum to the completion of vaginal opening. We evaluated body weight change, age at vaginal opening, onset of estrous cyclicity, age at first esturs, ovary weight, and serum concentrations of thyroxine and thyroid stimulating hormone in female rats. The age at vaginal opening of females receiving 40 200mg/kg was significantly younger than control. The onset of estrus cyclicity and age at first estrus of females receiving 200mg/kg was also younger than controls. There was no effect of treatment on body weight, ovary weight, and hormone concentration. Based on these results, it can be concluded that application of MC at dose level of 40mg/kg affects the vaginal opening and application of MC at dose level of 200mg/kg accelerates the vaginal opening and the onset of estrus cylicity.

  • PDF

The effects of estradiol and its metabolites on the regulation of CYP1A1 expression.

  • Euno, Joung-Ki;Yhong, Sheen-Yhun
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2002.10a
    • /
    • pp.170-170
    • /
    • 2002
  • College of Pharmacy, Ewha womans University, Seoul, 120-750, Korea 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is the most potent halogenated aromatic hydrocarbon congener that induces expression of several genes including CYP1A1. Exposure to TCDD results in many toxic actions such as carcinogenesis, hepatotoxicity, immune suppression, and reproductive and developmental toxicity. Dramatic differences in dioxin toxicity have been observed between the sexes of some animal species, suggesting hormonal modulation of dioxin action. Many studies have been reported and propose several mechanisms of anti-estrogenic effects of TCDD. In contrast, the effect of estrogen on the regulation of CYP1A1 are not clear at present. There are several reports showing conflicting results. It seems that induction/inhibition of CYP1A1 may be dependent on cell-type and concentration. The purpose of this study was to investigate the regulation of TCDD-induced CYP1A1 gene expression by estradiol and its metabolites. We examined whether estradiol and its metabolites altered TCDD-mediated induction of CYP1A1 enzyme activity. 17 ${\beta}$ estradiol and 16 ${\alpha}$ estriol at non cytotoxic concentrations caused a significant concentration dependent decline of TCDD-induced EROD activity To determine whether reduced EROD activity reflected altered CYP1A1 mRNA expression, we measured CYP1A1 mRNA level by RT-PCR. And to examine whether estradiol and its metabolites have effects on TCDD-induced CYP1A1 gene expression at the transcription level, we also peformed transient transfection with an AhR responsive reporter plasmid containing the 5' flanking region of the human CYP1A1 gene to examine whether estradiol and its metabolites have effects on TCDD-induced CYP1A1 gene expression at the transcription level.

  • PDF

KRG and its major ginsenosides do not show distinct steroidogenic activities examined by the OECD test guideline 440 and 456 assays

  • Namkyu Lee;Ju Hyeong Lee;Ji Eun Won;Youn Ji Lee;Sun Hee Hyun;Yeong-Deuk Yi ;Gyo In;Hee Dong Han;YoungJoo Lee
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.385-389
    • /
    • 2023
  • Background: Ginseng has been used as a traditional medicine for treatment of many diseases and for general health maintenance. Previously, we showed that ginseng did not demonstrate estrogenic property in ovariectomized mouse model. However, it is still possible that disruption of steroidogenesis leading to indirect hormonal activity. Methods: The hormonal activities were examined in compliance with OECD guidelines for detecting endocrine disrupting chemicals: test guideline (TG) No. 456 (an in vitro assay method for detecting steroidogenesis property) and TG No. 440 (an in vivo short-term screening method for chemicals with uterotrophic property). Results: Korean Red Ginseng (KRG) and ginsenosides Rb1, Rg1, and Rg3 did not interfere with estrogen and testosterone hormone synthesis as examined in H295 cells according to TG 456. KRG treatment to ovariectomized mice did not show a significant change in uterine weight. In addition, serum estrogen and testosterone levels were not change by KRG intake. Conclusion: These results clearly demonstrate that there is no steroidogenic activity associated with KRG and no disruption of the hypothalamic-pituitary-gonadal axis by KRG. Additional tests will be performed in pursuit of cellular molecular targets of ginseng to manifest mode of action.

Chronic Low-Dose Nonylphenol or Di-(2-ethylhexyl) Phthalate has a Different Estrogen-like Response in Mouse Uterus

  • Kim, Juhye;Cha, Sunyeong;Lee, Min Young;Hwang, Yeon Jeong;Yang, Eunhyeok;Ryou, Chongsuk;Jung, Hyo-Il;Cheon, Yong-Pil
    • Development and Reproduction
    • /
    • v.22 no.4
    • /
    • pp.379-391
    • /
    • 2018
  • Through the development of organic synthetic skill, chemicals that mimic signaling mediators such as steroid hormones have been exposed to the environment. Recently, it has become apparent that this circumstance should be further studied in the field of physiology. Estrogenic action of chronic low-dose nonylphenol (NP) and di-(2-ethylhexyl) phthalate (DEHP) in mouse uterus was assessed in this study. Ten to twelve-week-old female mice (CD-1) were fed drinking water containing NP (50 or $500{\mu}g/L$) or DEHP (133 or $1,330{\mu}g/L$) for 10 weeks. Uterine diameter, the thickness of myometrium and endometrium, and the height of luminal epithelial cells were measured and the number of glands were counted. The expression levels of the known $17{\beta}$-estradiol ($E_2$)-regulated genes were evaluated with real-time RT-PCR methodology. The ration of uterine weight to body weight increased in $133{\mu}g/L$ DEHP. Endometrial and myometrial thickness increased in 133 and $1,330{\mu}g/L$ DEHP treated groups, and in 50, $500{\mu}g/L$ NP and $133{\mu}g/L$ DEHP, respectively. The height of luminal epithelial cell decreased in NP groups. The numbers of luminal epithelial gland were decreased in NP groups but increased in $50{\mu}g/L$ DEHP group. The histological characters of glands were not different between groups. The mRNA expression profiles of the known $17{\beta}$-estradiol ($E_2$) downstream genes, Esr1, Esr2, Pgr, Lox, and Muc1, were also different between NP and DEHP groups. The expression levels dramatically increased in some genes by the NP or DEHP. Based on these results, it is suggested that the chronic low-dose NP or DEHP works as estrogen-like messengers in uterus with their own specific gene expression-regulation patterns.

Estrogen Replacement Effect of Korean Ginseng Saponin on Learning and Memory of Ovariectomized Mice

  • Jung, Jae-Won;Hyewhon Rhim;Bae, Eun-He;Lee, Bong-Hee;Park, Chan-Woong
    • Journal of Ginseng Research
    • /
    • v.24 no.1
    • /
    • pp.8-17
    • /
    • 2000
  • Estrogen can influence on the expression of behaviors not associated directly with reproduction, including learning and memory. Recently estrogen has received considerable attention for its effects on neuroprotection and neural circuits in brain areas associated with cognition. Although estrogen replacement therapy may be helpful to postmenopausal women, it also results in a number of harmful side effects. Ginseng also has steroidal qualities and contains several ginsenoside components which have similar backbone structure to estrogen. The objectives of this experiment were 1) to examine the effects of estrogen and 2) to investigate the effects of ginsenosides as estrogenic agent on learning and memory using the Morris water maze, a traditional experimental task for spatial memory. In the experiments designed here, ovariectomized mice were implanted subcutaneously with Sila, itic capsules containing 17${\beta}$-estradiol (100∼250 $\mu\textrm{g}$/$m\ell$), panaxadiol (PD) and panaxatriol (PT) saponins (15∼100 $\mu\textrm{g}$/$m\ell$) diluted with sesame oil. In the first set of experiment, the effects of estradiol on learning and memory during the Morris water maze was examined. When estradiol was delivered via Silastic capsules following training improved spatial memory performance in ovariectomized female mice. In the second set of experiment, three different PD and PT saponin concentrations were delivered via Silastic implants to ovariectomized female mice and their effects were compared with estrogenic effects. Results of three separate experiments demonstrated that estradiol, PD and PT administrated by Silastic implants for 2 weeks prior to water maze training significantly improved spatial memory performance compared to ovariectomized (OVX) mice, as indicated by lower escape latency over trial. The positive effect of estradiol suggests that estrogen can affect performance on learning and memory. In addition, the positive effect of PD and PT saponins suggest that ginsenosides have an estrogen-like effects in mediating learning and memory related behavior action.

  • PDF

Effect of Soy Isoflavones on the Expression of $TGF-{\beta}1$ and Its Receptors in Cultured Human Breast Cancer Cell Lines

  • Kim Young-Hwa;Jin Kyong-Suk;Lee Yong-Woo
    • Biomedical Science Letters
    • /
    • v.11 no.2
    • /
    • pp.175-183
    • /
    • 2005
  • The two major isoflavones in soy, genistein and daidzein, are well known to prevent hormone-dependent cancers by their anti estrogenic activity. The exact molecular mechanisms for the protective action are, however, not provided yet. It has been reported that genistein and daidzein have a potential anticancer activity through their antiproliferative effect in many hormone-dependent cancer cell lines. Transforming growth $factor-\beta1(TGF-\beta1)$ has also been found to have cell growth inhibitory effect, especially in mammary epithelial cells. This knowledge led to a hypothetical mechanism that the soy isoflavones-induced growth inhibitory effect can be derived from the regulation of $TGF-\beta1$ and $TGF-\beta$ receptors. In order to test this hypothesis, the effects of the soy isoflavones at various concentrations and periods on the expression of $TGF-\beta1$and $TGF-\beta$ receptors were investigated by using Northern blot analysis in human breast carcinoma epithelial cell lines, an estrogen receptor positive cell line (MCF-7) and an estrogen receptor negative cell line (MDA-MB-231). As a result, only genistein has shown a profound dose-dependent effect on $TGF-\beta1$ expression in the $ER^+$ cell line within the range of doses tested, and the expression levels are correspondent to their inhibitory activities of cell growth. Moreover, daidzein showed down-regulated $TGF-\beta1$ expression at a low dose, the cell growth proliferation was promoted at the same condition. Therefore, antiproliferative activity of the soy isoflavones can be mediated by $TGF-\beta1$ expression, and the effects are mainly, if not all, occurred by ER dependent pathway. The expression of $TGF-\beta$ receptors was induced at a lower dose than the one for $TGF-{\beta}1$ induction regardless of the presence of ER, and the expression patterns are similar to those of the cell growth inhibition. These results indicated that the regulation of $TGF-\beta$ receptor expression as well, prior to $TGF-\beta1$ expression, may be involved in the antiproliferative activity of soy isoflavones. Little or no expression of $TGF-\beta$ receptors was found in the MCF-7 and MDA-MB-231 cells, suggesting refractory properties of the cells to growth inhibitory effect of the $TGF-\beta$. The soy isoflavones can seemingly restore the sensitivity of growth inhibitory responses to $TGF-\beta1$ by re-inducing $TGF-\beta$ receptors expression. In conclusions, our findings presented in this study show that the antitumorigenic activity of the soy isoflavones could be mediated by not only $TGF-\beta1$induction but $TGF-\beta$ receptor restoration. Thus, soy isoflavones could be good model molecules to develop new nonsteroidal antiestrogenic chemopreventive agents, associated with, regulation of $TGF-\beta$ and its receptors.

  • PDF

Effect of 17β-estradiol on Ecdysteroid Pathway Related Genes in the Brackish Water Flea Diaphanosoma celebensis (17β-estradiol이 기수산 물벼룩의 Ecdysteroid 경로에 미치는 영향)

  • In, Soyeon;Yoo, Jewon;Cho, Hayoung;Lee, Young-Mi
    • Journal of Marine Life Science
    • /
    • v.5 no.2
    • /
    • pp.35-42
    • /
    • 2020
  • 17β-estradiol (E2) is a natural hormone secreted by ovary, and continuously discharged from household and livestock wastewater into aquatic environment. Due to its strong estrogenic activity, it has adverse effects on development and reproduction in crustacean as an endocrine disrupting chemical. Although ecdysteroid signaling pathway play a key role in development in crustacean, little information on transcriptional modulation of ecdysteroid-related genes in response to E2 is available in small crustacean. Here, we investigated the acute toxicity of E2 to obtain 24-h LCx values in the brackish water flea Diaphanosoma celebensis. Time-dependent expression patterns of seven ecdysteroid pathway - related genes (CYP314a1, EcRA, EcRB, USP, ERR, Vtg, VtgR) were further examined using quantitative real time reverse transcriptase polymerase chain reaction (qRT-PCR). As results, 24-h LC50 and LC10 values were 9.581 mg/l and 4.842 mg/l, respectively. The mRNA expression of CYP314a1, EcRA, USP, VtgR was significantly up-regulated at 12 or 24 h after exposure to E2. These findings indicate that E2 can affect their molting and reproduction by modulating the expression of ecdysteroid pathway - related in D. celebensis. This study will be useful for better understanding of molecular mode of action of endocrine disrupting chemicals on molting process in small crustacean.