Application of a catchment modelling system requires recorded information to ascertain the reliability and robustness of the predicted flow conditions. Where this recorded information is not available, the necessary information for reliable and robust predictions must be obtained from other available information sources. The alternative approach presented in this paper used inference models for getting this necessary information that is required to calibrate and validate the catchment modelling system for both an ungauged and a gauged catchments. In this study, inference models were developed for determination of control parameters of the Storm Water Management Model (SWMM), mainly based on landuse component of the catchment, which is a major factor to impact on quantity and quality of catchment runoff. Results from the study show that the new approach for determination of the spatially variable control parameters produced more accurate estimates than a traditional approach. Also, the number of control parameters estimated can be reduced significantly as the proposed method only requires determination of control parameters associated with each land use of the catchment while a traditional approach needs to assign a number of control parameters for a number of subcatchment.
For a thorough train control, the precise train position detection is necessarily required. The widely used current way for train position detection is the one of using track circuits. The track circuit has a simple structure, and has a high level of reliability. However trains can be detected only on track circuits, which have to be installed on all ground sections, and much amount of cost for its installation and maintenance is needed. In addition, for the track circuit, only discontinuous position detection is possible because of the features of the closed circuit loop configuration. As the recent advances in telecommunication technologies and high-tech vehicle-based control equipments, for the train position detection, the method to detect positions directly from on trains is being studied. Vehicle-based position detection method is to estimate train positions, speed, timing data continuously, and to use them as the control information. In this paper, the features of GPS navigation and DR navigation are analyzed, and the navigation filters are designed by constructing vehicle-based train position detection method by combining GPS navigation and DR navigation for their complementary cooperation, and by using kalman filter. The position estimation performance of the proposed method is also confirmed by simulations.
In this paper, we propose a method for generating improved saliency map by learning multiple features to improve the accuracy and reliability of saliency map which has similar result to human visual perception type. In order to overcome the inaccurate result of reverse selection or partial loss in color based salient area estimation in existing salience map generation, the proposed method generates multi feature data based on learning. The features to be considered in the image are analyzed through the process of distinguishing the color pattern and the region having the specificity in the original image, and the learning data is composed by the combination of the similar protrusion area definition and the specificity area using the LAB color space based color analysis. After combining the training data with the extrinsic information obtained from low level features such as frequency, color, and focus information, we reconstructed the final saliency map to minimize the inaccurate saliency area. For the experiment, we compared the ground truth image with the experimental results and obtained the precision-recall value.
Korean Journal of Agricultural and Forest Meteorology
/
v.19
no.4
/
pp.246-251
/
2017
Crop models have been used to predict a heading date for efficient management of fertilizer application. Recently, the ORYZA (v3) model was developed to improve the ORYZA2000 model, which has been used for simulation of rice growth in Korea. Still, little effort has been made to assess applicability of the ORYZA (v3) model to rice farms in Korea. The objective of this study was to evaluate reliability of heading dates predicted using the the ORYZA (v3) model, which would indicate applicability of the model to a decision support system for fertilizer application. Field experiments were conducted from 2015-2016 at the Rural Development Administration (RDA) to obtain rice phenology data. Shindongjin cultivar which is mid-late maturity type was grown under a conventional fertilizer management, e.g., application of fertilizer at the rate of 11 Kg N/10a. Another set of heading dates was obtained from annual reports at experiment farms operated by the National Institute of Crop Science and Agricultural Technology Centers in each province. The input files for the ORYZA (v3) model were prepared using weather and soil data collected from the Korean Meteorology Administration (KMA) and the Korean Soil Information System, respectively. Input parameters for crop management, e.g., transplanting date and planting density, were set to represent management used for the field experiment. The ORYZA (v3) model predicted heading date within 1 day for two seasons. The crop model also had a relatively small error in prediction of heading date for three ecotypes of rice cultivars at experiment farms where weather input data were obtained from a near-by weather station. Those results suggested that the ORYZA (v3) model would be useful for development of a decision support system for fertilizer application when reliable input data for weather variables become available.
Korean Journal of Agricultural and Forest Meteorology
/
v.22
no.2
/
pp.68-78
/
2020
Crop models have been used to predict vegetable crop yield, which would have a considerable economic impact on consumers as well as producers. A small number of models have been developed to estimate growth and yield of vegetables due to limited availability of growth observation data in high-quality. In this study, we aimed to analyze the protocols designed for collection of the observation data for major vegetable crops including cabbage, radish, garlic, onion and pepper. We also designed the protocols suitable for development and verification of a vegetable crop growth model. In particular, different measures were proposed to improve the existing protocol used by Statistics Korea (KOSTAT) and Rural Development Administration (RDA), which would enhance reliability of parameter estimation for the crop model. It would be advantageous to select sampling sites in areas where reliable weather observation data can be obtained because crop models quantify the response of crop growth to given weather conditions. It is recommended to choose multiple sampling sites where climate conditions would differ. It is crucial to collect time series data for comparison between observed and simulated crop growth and yield. A crop model can be developed to predict actual yield rather than attainable yield using data for crop damage caused by diseases and pests as well as weather anomalies. A bigdata platform where the observation data are to be shared would facilitate the development of crop models for vegetable crops.
The rainfall-runoff relationship is very difficult to predict because it is complicate factor affected by many temporal and spatial parameters of the basin. In recent, models which is based on artificial intelligent such as neural network, genetic algorithm fuzzy etc., are frequently used to predict discharge while stochastic or deterministic or empirical models are used in the past. However, the discharge data which are generally used for prediction as training and validation set are often estimated from rating curve which has potential error in its estimation that makes a problem in reliability. Therefore, in this study, water stage is predicted from antecedent rainfall and water stage data for short term using three models of neural network which trained by error back propagation algorithm and optimized by genetic algorithm and training error back propagation after it is optimized by genetic algorithm respectively. As the result, the model optimized by Genetic Algorithm gives the best forecasting ability which is not much decreased as the forecasting time increase. Moreover, the models using stage data only as the input data give better results than the models using precipitation data with stage data.
An, Gye-Hyeong;Kim, Eun-Jeong;Lee, Yong-Il;Jeong, Jun-Ha;Kim, Yeong-Chan
Journal of Korean Society of Transportation
/
v.24
no.5
s.91
/
pp.57-66
/
2006
This paper presents new pedestrian signal timings considering pedestrian demand Pedestrian characteristics, and land use which were obtained by Pedestrian characteristics field survey and pedestrian signal operation survey. Pedestrian signal timings suggested were compared to the existing pedestrian signal timings by using real field data. pedestrian characteristics field survey was conducted to collect pedestrian crossing speed data and reaction time data. Sixteen areas in Seoul were selected for the data collection. The average pedestrian crossing speed was 1.30m/sec and the 15th Percentile speed was 1.11m/sec. The average reaction time was 2.24 seconds. Pedestrian crossing speed differs by land use, road width. pedestrian age, sex, and number of Pedestrians. Reaction time also differs by road width, pedestrian age, and number of pedestrians. Statistical testing was performed to secure reliability of the collected data.
Journal of the Korea Academia-Industrial cooperation Society
/
v.18
no.6
/
pp.576-584
/
2017
Traffic demand prediction result is a primary factor for decision making such as the traffic planning and operation. The existing traffic demand prediction 4-step model only covers the trip between the origin and the destination, and not the demand followed by the accessibility improvement, due to the characteristic of this model. Therefore, the purpose of this research is to improve the limitations of the existing model by developing the inter-city trip generation and trip distribution model with more accessibility. After calculating of the trip generation and trip distribution model with more accessibility, the sign of the accessibility coefficient was positive. Commuting was the most insensitive indicator, affected by external factors among the other trip purposes. The leisure trip was the most sensitive, affected by the trip fee. According to the result of comparison with each of estimated model and observational data, it was certain that the reliability and assumption of the model have been improved by discovering the reduced weighted average error rate, Root Mean Square Error (RMSE) and total error through the model with more accessibility compared with the existing one.
Journal of the Earthquake Engineering Society of Korea
/
v.12
no.1
/
pp.79-87
/
2008
Seismic performance evaluation of structure requires an estimation of the structural performance in terms of displacement demand imposed by earthquakes on the structure. Incremental Dynamic Analysis(IDA) is a analysis method that has recently emerged to estimate structural performance under earthquakes. This method can obtained the entire range of structural performance from the linear elastic stage to yielding and finally collapse by subjecting the structure to increasing levels of ground acceleration. Most structures are expected to deform beyond the limit of linearly elastic behavior when subjected to strong ground motion. The nonlinear response history analysis(NRHA) among various nonlinear analysis methods is the most accurate to compute seismic performance of structures, but it is time-consuming and necessitate more efforts. The nonlinear approximate methods, which is more practical and reliable tools for predicting seismic behavior of structures, are extensively studied. The uncoupled modal response history analysis(UMRHA) is a method which can find the nonlinear reponse of the structures for ESDF from the pushover curve using NRHA or response spectrum. The direct spectrum analysis(DSA) is approximate nonlinear method to evaluate nonlinear response of structures, without iterative computations, given by the structural linear vibration period and yield strength from the pushover analysis. In this study, the practicality and the reliability of seismic performance of approximate nonlinear methods for incremental dynamic analysis of mixed building structures are to be compared.
Rainfall is one of the most important meteorological variables in meteorology, agriculture, hydrology, natural disaster, construction, and architecture. Recently, satellite remote sensing is essential to the accurate detection, estimation, and prediction of rainfall. In this study, the accuracy of Integrated Multi-satellite Retrievals for GPM (IMERG) product, a composite rainfall information based on Global Precipitation Measurement (GPM) satellite was evaluated with ground observation data in the inland of Korea. The Automatic Weather Station (AWS)-based rainfall measurement data were used for validation. The IMERG and AWS rainfall data were collocated and compared during one year from January 1, 2016 to December 31, 2016. The coastal regions and islands were also evaluated irrespective of the well-known uncertainty of satellite-based rainfall data. Consequently, the IMERG data showed a high correlation (0.95) and low error statistics of Bias (15.08 mm/mon) and RMSE (30.32 mm/mon) in comparison to AWS observations. In coastal regions and islands, the IMERG data have a high correlation more than 0.7 as well as inland regions, and the reliability of IMERG data was verified as rainfall data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.