• Title/Summary/Keyword: estimation of in-situ stress

Search Result 45, Processing Time 0.023 seconds

In situ horizontal stress effect on plastic zone around circular underground openings excavated in elastic zones

  • Komurlu, Eren;Kesimal, Ayhan;Hasanpour, Rohala
    • Geomechanics and Engineering
    • /
    • v.8 no.6
    • /
    • pp.783-799
    • /
    • 2015
  • In this study, effect of horizontal in situ stress on failure mechanism around underground openings excavated in isotropic, elastic rock zones is investigated. For estimating the plastic zone occurrence, an induced stress influence area approach (Bray Equations) was modified to define critical stress ratio according to the Mohr-Coulomb failure criterion. Results obtained from modified calculations were compared with results of some other analytical solutions for plastic zone thickness estimation and the numerical modelling (finite difference method software, FLAC2D) study. Plastic zone and its geometry around tunnels were analyzed for different in situ stress conditions. The modified equations gave similar results with those obtained from the other approaches. However, safer results were calculated using the modified equations for high in situ stress conditions and excessive ratio of horizontal to vertical in situ stresses. As the outcome of this study, the modified equations are suggested to use for estimating the plastic zone occurrence and its thickness around the tunnels with circular cross-section.

Experimental study of Kaiser effect under cyclic compression and tension tests

  • Chen, Yulong;Irfan, Muhammad
    • Geomechanics and Engineering
    • /
    • v.14 no.2
    • /
    • pp.203-209
    • /
    • 2018
  • Reliable estimation of compressive as well as tensile in-situ stresses is critical in the design and analysis of underground structures and openings in rocks. Kaiser effect technique, which uses acoustic emission from rock specimens under cyclic load, is well established for the estimation of in-situ compressive stresses. This paper investigates the Kaiser effect on marble specimens under cyclic uniaxial compressive as well as cyclic uniaxial tensile conditions. The tensile behavior was studied by means of Brazilian tests. Each specimen was tested by applying the load in four loading cycles having magnitudes of 40%, 60%, 80% and 100% of the peak stress. The experimental results confirm the presence of Kaiser effect in marble specimens under both compressive and tensile loading conditions. Kaiser effect was found to be more dominant in the first two loading cycles and started disappearing as the applied stress approached the peak stress, where felicity effect became dominant instead. This behavior was observed to be consistent under both compressive and tensile loading conditions and can be applied for the estimation of in-situ rock stresses as a function of peak rock stress. At a micromechanical level, Kaiser effect is evident when the pre-existing stress is smaller than the crack damage stress and ambiguous when pre-existing stress exceeds the crack damage stress. Upon reaching the crack damage stress, the cracks begin to propagate and coalesce in an unstable manner. Hence acoustic emission observations through Kaiser effect analysis can help to estimate the crack damage stresses reliably thereby improving the efficiency of design parameters.

Electromechanical Relationn of metallic heat wires and Its Application to the Estimation of In_situ Stress of Structural Tendons (금속계열선의 전기기계적 상관작용과 긴장력 계측이 가능한 긴장재)

  • Zi Goang-Seup;Jun Ki-Woo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.445-450
    • /
    • 2006
  • It is proposed that the electromechanical relation of the conductive materials with high electrical resistance may be used to estimate the current stress of prestressing tendons. To choose the best conductive material to this end, we studied the electromechanical relations of carbon fibers and metalic heat wires experimentally. It is found that the relation of carbon fibers can be modelled by a parabolic(or hyperbolic) function in the early stage of deformation. However because the relation is not consistent when it is unloaded and reload, carbon fibers are not suitable for this purpose. Metallic heat wires show a consistent linear relation during loading and unloading in the elastic deformation and are suitable for this purpose. To estimate the electromechanics relation of metallic wires, we developed a simple formula based on the rigid plasticity. We propose a new kind of prestressing tendons whose stress can be monitored.

  • PDF

Regional Distribution Pattern and Geo-historical Transition of In-situ Stress Fields in the Korean Peninsula (한반도지역의 현지응력장 분포 패턴 및 지질시대별 전이 추이)

  • Synn, Joong-Ho;Park, Chan;Lee, Byung-Joo
    • Tunnel and Underground Space
    • /
    • v.23 no.6
    • /
    • pp.457-469
    • /
    • 2013
  • We have analyzed the regional in-situ stress pattern using 460 stress measurement data at about 100 test sites in Korea, and suggested correlation equations of stress-depth and stress ratio-depth. We made Korea Stress Map(KSM) as in-situ stress fields of the Korean peninsula, combining with a paleo-stress analysis according to the geological period and a stress estimation from focal mechanism. We confirmed the reliability and applicability of correlation equations derived in this study, comparing with worldwide stress-depth patterns, and also estimated the pattern of in-situ stress fields of north-eastern Asia including Korea, China and Japan, comparing with World Stress Map.

A study on analysis of tunnel behaviors considering the characteristics of in-situ stress distribution in rock mass (암반응력의 분포특성을 고려한 터널거동 분석에 관한 연구)

  • Part, Do-Hyun;Kim, Young-Geun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.3
    • /
    • pp.275-286
    • /
    • 2007
  • In construction of a structure in underground space, in-situ stress in rock mass has great effect on the stability of the structure. Especially, the direction and magnitude of rock stress have influence on the excavation method, the choice of support and reinforcement method for establishing the stability of tunnel. Therefore, it is very important to consider the characteristics of in-situ stress in rock mass for tunnel stability analysis. In this study, a reasonable design method for underground structure was reviewed through the case study for tunnel design considering in-situ rock stress. For this purpose, the estimation for SRF (Stress Reduction Factor) as input parameter in rock classification using Q-System and the assesment for tunnel support were studied. Also, considering the characteristics of in-situ rock stress such as the magnitude of K and the direction of principal stress, the parameter studies for tunnel stability analysis were carried out. An improved method was proposed for obtaining the better results in the tunnel stability analysis.

  • PDF

Estimation of in-situ Stresses and the Effect of a Preexisting Inclined Fracture by Hydraulic Fracturing (수압파쇄를 이용한 초기지압측정과 기존경사균열의 영향)

  • 신중호;신희순;최성웅;이희근
    • Tunnel and Underground Space
    • /
    • v.4 no.1
    • /
    • pp.55-62
    • /
    • 1994
  • The hydraulic fracturing in a field site was performed for the measurement of in-situ stresses. For the estimation of the effect of a preexisting inclined fracture, the test on a preexisting fracture zone was also conducted. From the measurements at three shallow depths, the ratios of max. to min. horizontal stress showed the range of 1.19-1.56 and the K values showed the range of 2.62-3.86. In case of a preexisting fracture with the inclination of 15 degrees, the stresses calculated as upper bound values by considering it. It seemed from this that the inclination less than 15 degrees had small effect on the stress calculation.

  • PDF

Estimation of Residual Stresses in Micromachined Films (마이크로머시닝 기술에 의해 형성된 막에 있어서의 잔류응력 추정)

  • Min, Yeong-Hun;Kim, Yong-Gwon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.6
    • /
    • pp.354-359
    • /
    • 2000
  • A new method of measuring residual stress in micromachined film is proposed. An estimation of residual stress is performed by using least squares fit with an appropriate deflection modeling. an exact value of residual stress is obtained without any of the ambiguities that exist in conventional buckling method, and a good approximation is also obtained by using a few data points. Therefore, the test structures area could be greatly decreased by using this method. The measurement can be done more easily and simply without any actuation or any specific measuring equipment. The structure and fabrication processes described in this paper are simple and widely used in surface micromachining. In addition, in-situ measurement is available by using the proposed method when the test structure and the measurement structure are fabricated on a wafer simultaneously.

  • PDF

Estimation of Effective Stress for Undrained Clays using In-situ Penetration test (원위치 관입시험을 이용한 비배수 점토의 유효응력 산정)

  • Cho, Sung-Hwan;Seo, Kyung-Bum;Lee, Jun-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.990-996
    • /
    • 2010
  • In this study, a method for estimating the effective stress of clays using in-situ penetration test(PCPT) result is proposed. The proposed method is based on a correlation between the PCPT results and strength increment ratio. According to proposed method, no additional testing procedure for collecting undisturbed soil sample is required, which can reduce overall testing cost. To verify this method, for analysis, various analytical solutions were adopted and used. Measured and predicted effective stress are compared on the test results. The verification sites consist of a variety of soil condition. From comparison, it is seen that predicted value of effective stress using the propose method match well those from measured results.

  • PDF

Improvement of In-Situ Stress Measurements by Hydraulic Fracturing - Focusing on the New Standard by Japanese Geotechnical Society (수압파쇄를 이용한 초기응력 측정 결과의 신뢰도 제고 방안 - 일본 지반공학회 표준시험법 개정안을 중심으로)

  • Kim, Hyung-Mok;Lee, Hangbok;Park, Chan;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.32 no.1
    • /
    • pp.1-19
    • /
    • 2022
  • In this report, new standard, published by Japanese Geotechnical Society, on in-situ stress measurements by hydraulic fracturing was reviewed. In the standard, modification was made for the calculation of fracture re-opening pressure in consideration of fracture surface roughness and residual aperture. The standard also presents how much the system compliance influences the estimation of the fracture re-opening pressure and subsequent in-situ stresses. It is shown that the stiffer the rock mass is, the system compliance should be sufficiently small enough so as to obtain in-situ stress measurement with higher confidence.

A new geomechanical approach to investigate the role of in-situ stresses and pore pressure on hydraulic fracture pressure profile in vertical and horizontal oil wells

  • Saberhosseini, Seyed Erfan;Keshavarzi, Reza;Ahangari, Kaveh
    • Geomechanics and Engineering
    • /
    • v.7 no.3
    • /
    • pp.233-246
    • /
    • 2014
  • Estimation of fracture initiation pressure is one of the most difficult technical challenges in hydraulic fracturing treatment of vertical or horizontal oil wells. In this study, the influence of in-situ stresses and pore pressure values on fracture initiation pressure and its profile in vertical and horizontal oil wells in a normal stress regime have been investigated. Cohesive elements with traction-separation law (XFEM-based cohesive law) are used for simulating the fracturing process in a fluid-solid coupling finite element model. The maximum nominal stress criterion is selected for initiation of damage in the cohesive elements. The stress intensity factors are verified for both XFEM-based cohesive law and analytical solution to show the validation of the cohesive law in fracture modeling where the compared results are in a very good agreement with less than 1% error. The results showed that, generally by increasing the difference between the maximum and minimum horizontal stress, the fracture pressure and its profile has been strongly changed in the vertical wells. Also, it's been clearly observed that in a horizontal well drilled in the direction of minimum horizontal stress, the values of fracture pressure have been significantly affected by the difference between overburden pressure and maximum horizontal stress. Additionally, increasing pore pressure from under-pressure regime to over-pressure state has made a considerable fall on fracture pressure in both vertical and horizontal oil wells.