DOI QR코드

DOI QR Code

Improvement of In-Situ Stress Measurements by Hydraulic Fracturing - Focusing on the New Standard by Japanese Geotechnical Society

수압파쇄를 이용한 초기응력 측정 결과의 신뢰도 제고 방안 - 일본 지반공학회 표준시험법 개정안을 중심으로

  • Kim, Hyung-Mok (Department of Energy Resources and Geosystems Engineering, Sejong University) ;
  • Lee, Hangbok (Deep Subsurface Storage and Disposal Research Center, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Park, Chan (Deep Subsurface Storage and Disposal Research Center, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Park, Eui-Seob (Deep Subsurface Storage and Disposal Research Center, Korea Institute of Geoscience and Mineral Resources (KIGAM))
  • 김형목 (세종대학교 지구자원시스템공학과) ;
  • 이항복 (한국지질자원연구원 국토지질연구본부 심층처분환경연구센터) ;
  • 박찬 (한국지질자원연구원 국토지질연구본부 심층처분환경연구센터) ;
  • 박의섭 (한국지질자원연구원 국토지질연구본부 심층처분환경연구센터)
  • Received : 2021.09.12
  • Accepted : 2022.02.18
  • Published : 2022.02.28

Abstract

In this report, new standard, published by Japanese Geotechnical Society, on in-situ stress measurements by hydraulic fracturing was reviewed. In the standard, modification was made for the calculation of fracture re-opening pressure in consideration of fracture surface roughness and residual aperture. The standard also presents how much the system compliance influences the estimation of the fracture re-opening pressure and subsequent in-situ stresses. It is shown that the stiffer the rock mass is, the system compliance should be sufficiently small enough so as to obtain in-situ stress measurement with higher confidence.

본고에서는 수압파쇄를 이용한 초기응력 측정결과의 정밀도 제고 방안으로 최근 제안된 일본 지반공학회 표준시험법 개정안의 검토 결과를 수록하였다. 개정안에서는 수압파쇄에 의해 형성된 암석 균열 표면의 거칠기와 잔류 간극을 고려한 균열재개압력의 수정식을 제안하였다. 또한, 수압파쇄시스템 컴플라이언스가 초기응력 추정 결과에 미치는 영향을 파악하고 주변 암반의 탄성계수가 클수록 수압파쇄시스템 컴플라이언스가 충분히 낮아야함을 보였다.

Keywords

Acknowledgement

한국지질자원연구원 기본사업과 2021년도 정부(원자력안전위원회)의 재원으로 사용후핵연료관리핵심기술개발사업단 및 한국원자력안전재단의 지원(2109092-0121-WT112)을 받아 수행되었습니다. 제1저자는 2019년도 정부(과학기술정보통신부) 재원으로 한국연구재단 기초연구사업(2019R1F1A105871113)의 지원을 받았습니다. 지원에 감사드립니다.

References

  1. Bae, S., Kim, J., Kim, J., and Lee, Y., 2008, In-situ rock stress measurment at the water tunnel sites in the OO oil storage facility with hydraulic fracturing method, Tunnel and Underground Space, 18(1), 80-89.
  2. Choi, S., Park, C., Synn, J., and Shin, H., 2008, 10 years experience of in-situ stress measurments using a hydraulic fracturing for tunnel design, Korean Society for Rock Mechanics Spering Meeting, 79-88.
  3. Cornet, F.H., 1986, Stress determination from hydraulic tests on preexisting fractures -the HTPF method, in Proc. Int. Symp. on Rock Stress and Rock Stress Measurements, Stockholm, Centek Publ., Lulea, Sweden, 301-312.
  4. Cowtgill, S.M., Meredith, P.G., Murrelland, A.F., and Brereton, N.R., 1993, Crustal stresses in the North Sea from breakouts and other borehole data, in Proc. 34th US Symp. Rock Mech., Madison, Int. J. Rock Mech. Min. Sci. & Geomech Abstr., 30, 113-116.
  5. De la Cruz, R.V., 1977, Jack fracturing technique of stress measurement, Rock Mech., 9, 27-42. https://doi.org/10.1007/BF01238568
  6. Fairhurst, C., 1964, Measurement of in situ rock stresses with particular references to hydraulic fracturing, Rock Mech. Eng. Geol., 2, 129-147.
  7. Geertsma, J., and Klerk, F.d., 1969, A Rapid Method of Predicting Width and Extent of Hydraulically Induced Fractures, J. Pet. Tech., 21. 1571-1581. https://doi.org/10.2118/2458-PA
  8. Haimson, B.C., 1978, The hydro fracturing stress measuring method and recent field results, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 15, 167-178. https://doi.org/10.1016/0148-9062(78)91223-8
  9. Haimson, B.C., and Lee, M.Y., 1995. Estimating in situ stress conditions from borehole breakouts and core disking - experimental results in granite, in Proc. Int. Workshop on Rock Stress Measurement at Great Depth, Tokyo, Japan, 8th ISRM Congress, 19-24.
  10. Hickman, S.H., Healy, J.H., and Zoback, M.D., 1985, In-situ stress, natural fracture distribution, and borehole elongation in the Auburn geothermal well, J. Geophys. Res., 90, 5497-5512. https://doi.org/10.1029/JB090iB07p05497
  11. Hiramatsu, Y., and Oka, Y., 1968, Determination of the stress in rock unaffected by boreholes or drifts from measured strains or deformations, Int. J. Rock Mech. Min. Sci., 5, 337-353. https://doi.org/10.1016/0148-9062(68)90005-3
  12. Hubbert, K.M., and Willis, D.G., 1957, Mechanics of hydraulic fracturing, Petrol. Trans. AIME, T.P. 4597, 210, 153-166. https://doi.org/10.2118/686-G
  13. Ishida, T., and Saito, T., 1995, Observation of core discing and in situ stress measurements; Stress criteria causing core discing, Rock Mech. Rock Engng, 28(3), 167-182. https://doi.org/10.1007/BF01020150
  14. Ito, T., and Yokoyama, T., 2021, Effec0t of system compliance on pressure-time curve at reopening and new standard in Japan, the 55th US Rock Mechanics/Geomechanics Symposium, Houston, Texas, USA 20-23, June 2021, ARMA21-2069.
  15. Ito, T., Evans, K., Kawaiand, K., and Hayashi, K., 1999, Hydraulic fracture reopening pressure and the estimation of maximum horizontal stress, Int. J. Rock Mech. Min. Sci. & Geomech. Abst., 36, 811-826. https://doi.org/10.1016/S0148-9062(99)00053-4
  16. Ito, T., Igarashi, A., Ito, H., and Sano, O., 2005, Problem for the maximum stress estimation by hydrofracturing method and its potential solution, In Proc. of the 40th US Rock Mech. Symp., Anchorage, 25-29 June 2005, ARMA/USRMS 05-862.
  17. Ito, T., Igarashi, A., Kato, H., Ito, H., and Sano, O., 2006, Crucial effect of system compliance on the maximum stress estimation in the hydrofracturing method: Theoretical considerations and field test verification, Earth Planets and Space, 58: 963-971. https://doi.org/10.1186/BF03352601
  18. Kaiser, J., 1953, Erkenntnisse und Folgerungen aus der messung von metallischen Werkstoffen, Arch. Eisenhutt., 24, 1/2, 43-45.
  19. Kanagawa, T. Hayashi, M., and Nakasa, H., 1977, Estimation of stress component in rocks using acoustic emission, Proc. JSCE, 258, 63-75.
  20. Kanagawa, T., Hayashi, M., and Hibino, S.,1975, Review of in-situ stress measurement, Proc. JSCE Symp. Rock Mech., 9, 46-49.
  21. Kanagawa, T., Hibino, S., and Ishida, T., 1983, 3D in-situ stress measurement using over-coring method, CRIEPI Report, 385033, 1-21.
  22. Kehle, R.O., 1964, Determination of tectonic stresses through analysis of hydraulic well fracturing, J. Geophys. Res., 69, 252-273.
  23. Kobayashi, S., Yoshida, F., and Uchida, Y., 1990, Method for Initial Stress Measurement by Compact Conical-ended Borehole Strain gage, Japan Symposium on Rock Mechanics, 8, 279-284.
  24. KSRM (Korean Society for Rock Mechanics and Rock Engineering), 2016, Standard Method for Hydraulic Fracturing of in-situ stress Measurement, http://www.ksrm.or.kr.
  25. Leeman, E,R., 1959, The Measurement of changes in rock stress due to mining, Mine Quarry Eng., 25(7), 300-304.
  26. Leeman, E.R., 1964, The measurement of stress in rock-Parts I, II and III, J. S. Afr. Min. Metall., 65, 45-114.
  27. Leeman, E.R., 1968, The Determination of the complete state of stress in rock in a single borehole laboratory and underground measurements, Int. J. Rock Mech. Min. Sci., 5, 337-353. https://doi.org/10.1016/0148-9062(68)90026-0
  28. Matsuki, K. and Takeuchi, K.. 1993, Three-dimensional in situ stress determination by anelastic strain recovery of a rock core, in Proc. 34th US Syrup. Rock Mech., Madison, also published in Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 30, 1019-1022.
  29. Matsuki, K., 1989, In-situ stress measurement using DSA, Proc. Workshop on Crustal Stress Measurement, MMIJ, 92-104.
  30. Matsuki, K., 1991, Three-dimensional in situ stress measurement with anelastic strain recovery of a rock core, in Proc. 7th Cong. Int. Soc. Rock Mech. (ISRM), Aachen, Balkema, Rotterdam, 1, 557-560.
  31. Matsuki, K., Hongo, K., and Sakaguchi, K., 1997, The relationship between the shape of a disced core and three-diemensional in-situ stresses estimated by a tensile principal stress analysis, Journal of MMIJ, 113, 317-324. https://doi.org/10.2473/shigentosozai.113.317
  32. Merrill, R.H., 1967, Three component borehole deformation gage for determining the stress in rock, US Bureau of Mines Report of Investigation RI 7015.
  33. Mizuta, Y., Sakuma, S., Katoh, H., and Kikuchi, S., 1988, Stress and stress change measurements by hydraulic fracturing and double fracturing for safe underground excavation, Proc. 2nd Int. Work Shop on Hydraulic Fracturing Stress Measurement, 205-244.
  34. Mizuta, Y., Sano, O., Ogino, S.. and Katoh, H., 1987, Three dimensional stress determination by hydraulic fracturing for underground excavation design, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 24, 15-29. https://doi.org/10.1016/0148-9062(87)91228-9
  35. Obara, Y., and Sugawara, K., 1990, Field stress measurements in jointed rock, Proc. of Int. Conf. on Mech. of Jointed and Faulted Rock, Vienna, 827-834.
  36. Obert, L., Merrill, R.H., and Morgan, T.A., 1962, Borehole deformation gauge for determining the stress in mine rock, US Bureau of Mines Report of Investigation RI 5978.
  37. Oka, Y., Kameoka, Y., Saito, T., and Hiramatsu, Y., 1979, Investigations on the new method of determining rock stress by the stress relief technique and applications of this method, Rock Mechanics in Japan, 3, 68-70.
  38. Okabe, T., Shinohara, N., Takasugi, S., and Hayashi, K., 1996, Earth's crust stress field estimation by using vertical fractures caused by borehole drilling, Proc. VIII th International Symposium on the Observation of the Continental Crust Through Drilling, Tsukuba, 265-270.
  39. Pine, R.J., Tunbridge, L.W., and Kwakwa, K., 1983, In-situ stress measurement in the Carnmenellis Granite-I. Overcoring tests at South Crofty Mine at depth of 790m, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr, 20(2), 51-62. https://doi.org/10.1016/0148-9062(83)90327-3
  40. Plumb, R.A., and Cox, J.W., 1987, Stress directions in eastern North America determined to 4.5km from borehole elongation measurements, J. Geophys, Res., 92(B6), 4805-4816. https://doi.org/10.1029/JB092iB06p04805
  41. Sakaguchi, K., Obara, Y., Nakayama, T., and Sugawara K., 1992, Accuracy of rock stress measurement by means of conical-ended borehole technique, Journal of MMIJ, 108, 455-460. https://doi.org/10.2473/shigentosozai.108.455
  42. Sano, O., Ito, H., Hirata, A., Mizuta, Y., 2005, Review of methods of measuring stress and its variations, Bull. Earthq. Res. Inst. Univ., Tokyo, 80, 87-103.
  43. Sano, O., Yokoyama, T., Ogawa, R., Orita, Y., Nakayama, M., Itamoto, K., and Kuwabara, Q., et al., 2007, Proc. of the 28th West Japan Symposium on Rock Engineering, 65-70.
  44. Sato, T., Tanno, T., Hikima R., Sanada, H., and Kato, H., 2012, Data quality of in-situ stresses by hydraulic fracturing method - applicability of high-compliance system and evaluation of maximum stress based on the results in granite, Journal MMIJ, 128, 449-454. https://doi.org/10.2473/journalofmmij.128.449
  45. Scheidegger, A.E., 1962, Stresses in the Earth's crust as determined from hydraulic fracturing data, Geologie und Bauwesen, 27, 45-53.
  46. Serata, S., and Kikuchi, S., 1986, A diametral deformation method for in situ stress and rock property measurement, Int. J. Min. Geol. Eng., 4, 15-38. https://doi.org/10.1007/BF01553754
  47. Seto, M., Utagawa, T., Kiyama, T., and Katsuyama, K., 1990, The estimation of pre-stress from AE characteristics in cyclic loading of the pre-stressed rock, Japan Symposium on Rock Mechanics, 8, 321-326.
  48. Siegfried, R.W., and Simmons, G., 1978, Characterization of oriented cracks with differential strain analysis, J. Geophys. Res., 83, 1269-1278. https://doi.org/10.1029/JB083iB03p01269
  49. Simmons, G., Siegfried, R.W., and Feves, M.L., 1974, Differential strain analysis: a new method for examining cracks in rocks, J. Geophys. Res., 79, 4383-4385. https://doi.org/10.1029/JB079i029p04383
  50. Stephansson, O., 1983, Rock stress measurement by sleeve fracturing, in Proc. 5th Cong. Int. Soc. Rock Mech. (ISRM), Melbourne, Balkema, Rotterdam, 129-137.
  51. Stock, J.M., Healy, J.H., Hickman, S.H., and Zoback, M.D., 1985, Hydraulic fracturing stress measurements at Yucca Mountain, Nevada and relationship to the regional stress field, J. Geophys., Res., 90(B10), 8691-9706. https://doi.org/10.1029/JB090iB10p08691
  52. Strickland, F.G., and Ren, N.-K., 1980, Use of differential strain curve analysis in predicting the in-situ stress state for deep wells, in Proc. 21st US Symp. Rock Mech., Rolla, University of Missouri Publ., 523-532.
  53. Sugawara, K., and Obara,Y., 1986, Measurement of In-situ Rock Stress by Hemispherical-ended Borehole Technique, Int. J. Min. Sci. & Tech., 3, 287-300. https://doi.org/10.1016/S0167-9031(86)90632-8
  54. Sugawara, K., Kameoka, Y., Sito, T., Oka, Y., and Hiramatsu, Y., 1978, A study on core discing pheonomenon, Journal of MMIJ 94, 1089, 797-803.
  55. Sugawara, K., Obara, Y., Araki, H., and Ishimura, S., 1987, Rock stress measurement using sleeve fracturing, Japan Symposium on Rock Mechanics, 7, p.181-186.
  56. Sugawara, T., Ishijima, Y., and Ishizeki, T., 1999, Development of Rock stress measurement system by borehole deformation method, Proc. MMIJ Spring Meeting, 127-128.
  57. Synn, J., Park, C., Kim, K., 2013, Hydraulic fracturing and 2D-3D in-situ stress analysis in jointed rock mass, Korean Society for Rock Mechanics Spring Meeting, 2013.03, 11-15.
  58. Teufel, L.W., 1983, Determination of in-situ stress from anelastic strain recovery measurements of oriented core, Symposium on low permeability gas reservoirs, Denver, Colorado, SPE/DOE 11649, 421-430.
  59. Voight, B., 1968, Determination of the virgin state of stress in the vicinity of a borehole from measurements of a partial anelastic strain tensor in drill cores, Felsmechanik und Ingenieurgeologi, 6, 201-215.
  60. Wolter, K.E., and Berckhemer, H., 1989, Time dependent strain recovery of cores from KTB-deep drilling hole, Rock Mech. Rock Eng., 22, 273-287. https://doi.org/10.1007/BF01262283
  61. Yamamoto, 2000, Standard method of DRA, Fall meeting of The mining and materials processing institute of Japan, 71-76.
  62. Yokoyama, K., 2013, Standardization and globalization of initial stress measurement techniques developed and improved in Japan, Journal of MMIJ, 129, 683-693. https://doi.org/10.2473/journalofmmij.129.683
  63. Yokoyama, K., and Tanaka, T., 1989, In-situ stress measurement by AE and deformation rate analysis, Japan, Applied Geological Society Conference, 5-8.
  64. Yokoyama, K., et al., 2012, In-situ stress measurement by core discing, Proc. of MMIJ 2012 (Akita), 256-268.
  65. Yokoyama, T., 2017, Current status and standardization of initial stress measurement techniques, Annual Report of Applied Geology, 36, 2017.
  66. Yokoyama, T., and Nakanishi, A., 1997, A proposal of geo-stress measurement technique by plate fracturing, Proc. of the international symposium on rock stress Kumamoto, 143-148.
  67. Yokoyama, T., Funato, A., Ito, T., Ogawa, K., and Nayuki, T., 2021, Development and application of high stiffness hydraulic fracturing systems for stress measurements corresponding to new standard in Japan, the 55th US Rock Mechanics/Geomechanics Symposium, Houston, Texas, USA 20-23, June 2021. ARMA21-1850.
  68. Yokoyama, T., Ogawa, K., Sano, O., Hirata, A., and Mizuta, Y., 2010. Development of borehole-jack fracturing technique and in situ measurements, Rock Stress and Earthquakes, 93-100.
  69. Zoback, M.D., Barton, C.A., Brudy, M., Castillo, D.A., Finkbeiner, T., Grollimund, B.R., Moos, D.B., Peka, P., Ward, C.D., and Wiprut, D.J., 2003, Determination of stress orientation and magnitude in deep wells, Int. J. Rock Mech. Min. Sci., 40, 1049-1076. https://doi.org/10.1016/j.ijrmms.2003.07.001
  70. Zoback, M.D., Moos, D.L., Mastin, L., and Anderson, R.N., 1985, Wellbore breakouts and in situ stress, J. Geophys Res., 90, 5523-5530. https://doi.org/10.1029/JB090iB07p05523