본 논문은 DFT기반의 단일마이크 음성향상 방식에 적용된 두 종류의 generalized-Gamma 분포기반의 음성추정 알고리즘을 비교한다. 음성향상 방식으로서는 최소잡음성분에 의한 회귀적인 평균스펙트럼 값으로부터 유도되는 잡음 추정을 각각 $\kappa$=1인 경우와 $\kappa$=2인 경우의 Gamma 분포를 이용한 음성추정 기법에 결합하여 음질을 향상시켰다. 각 방식에 의해 향상된 음성신호를 자동차 환경에서의 음성인식에 적용하여 그 성능을 비교하였다.
오차분포 추정을 위한 커널 사이즈는 오차확률밀도 사이의 유클리드 거리를 최소화 알고리즘의 가중치 갱신에 적합한 커널 사이즈가 될 수 없다. 이 논문에서는 MED 알고리즘의 수렴 성능 향상을 위해 적응적으로 커널 사이즈를 갱신하는 방법을 제안하였다. 제안한 방식은 MED 학습 알고리즘의 가중치 갱신을 위해 커널 사이즈에 대한 오차분산의 평균변화율을 도입하여 MED의 오차에 대한 평균전력이 감소하는 방향으로 커널 사이즈를 조절하도록 하였다. 제안된 적응 커널 추정법을 무선통신 채널의 왜곡 보상에 적용하여 학습 성능을 실험하고 그 효능을 밝혔다. 오차분산에 비례한 작은 값을 가지는 기존의 오차분포 추정 위한 최적 커널 사이즈와 달리, 제안한 방법에 의한 커널 사이즈는 MED 가중치 수렴을 위한 적절한 커널 사이즈로 수렴함을 보였다. 실험 결과로부터 제안한 방법이 MED 알고리즘의 커널 사이즈 설정에 따른 민감성을 크게 해결한 방법이라고 볼 수 있다.
Estimation of accurate blood volume flow in ultrasound Doppler blood flow spectrograms is extremely important for clinical diagnostic purposes. Blood volume flow measurements require the assessment of both the velocity distribution and the cross-sectional area of the vessel. Unfortunately, the existing volume flow estimation algorithms by ultrasound lack the velocity space distribution information in cross-sections of a vessel and have the problems of low accuracy and poor stability. In this paper, a new robust ultrasound volume flow estimation method based on multigate (RMG) is proposed and the multigate technology provides detail information on the local velocity distribution. In this method, an accurate double iterative flow velocity estimation algorithm (DIV) is used to estimate the mean velocity and it has been tested on in vivo data from carotid. The results from experiments indicate a mean standard deviation of less than 6% in flow velocities when estimated for a range of SNR levels. The RMG method is validated in a custom-designed experimental setup, Doppler phantom and imitation blood flow control system. In vitro experimental results show that the mean error of the RMG algorithm is 4.81%. Low errors in blood volume flow estimation make the prospect of using the RMG algorithm for real-time blood volume flow estimation possible.
KSII Transactions on Internet and Information Systems (TIIS)
/
제7권11호
/
pp.2657-2675
/
2013
A novel neighbor selection-based fingerprinting algorithm using matrix correlation (MC) for Wi-Fi localization is presented in this paper. Compared with classic fingerprinting algorithms that usually employ a single received signal strength (RSS) sample, the presented algorithm uses multiple on-line RSS samples in the form of a matrix and measures correlations between the on-line RSS matrix and RSS matrices in the radio-map. The algorithm makes efficient use of on-line RSS information and considers RSS variations of reference points (RPs) for localization, so it offers more accurate localization results than classic neighbor selection-based algorithms. Based on the MC algorithm, an error estimation method using artificial neural network is also presented to fuse available information that includes RSS samples and localization results computed by the MC algorithm and model the nonlinear relationship between the available information and localization errors. In the on-line phase, localization errors are estimated and then used to correct the localization results to reduce negative influences caused by a static radio-map and RP distribution. Experimental results demonstrate that the MC algorithm outperforms the other neighbor selection-based algorithms and the error estimation method can reduce the mean of localization errors by nearly half.
최근 들어 확률 분포를 개체군으로부터 추정하여 보다 효율적으로 최적화를 해결하려는 연구가 진행되고 있다. 특히 복잡한 문제의 해결을 위해서 혼합 분포가 사용되고 있다. 그러나 이 경우 몇 개의 성분으로 혼합 분포를 나타낼 것인가를 결정하기 어려운 문제가 있으며, 각 분포에 의하여 표현되는 이전 세대의 우수한 부분 해들을 잘 결합하지 못하는 단점이 있다. 본 논문에서는 변분 베이지안 혼합 인자 분석(variational Bayesian mixtures of factor analyzers) 기법을 사용한 개체군의 분포 추정을 통해 실수 공간에서의 최적화 문제를 해결하는 방법을 제안한다. 이 기법은 혼합 분포의 개수 추정을 자동화하며, 잠재 변수(latent variable)를 사용하여 각 분포가 표현하는 세부 개체군 내에 포함된 부분 해들의 혼합을 효율적으로 수행할 수 있다. 잘 알려진 함수 최적화 문제들에 대해 다른 분포 추정 진화 알고리즘과 비교하여 제안하는 방법의 우수성을 검증하였다. 또한 시스템 생물학에서 다루고 있는 생화학 네트워크의 동적 모델링을 위한 매개변수 추정도 성공적으로 수행하였다.
EM algorithm has good convergence rate for numerical procedures which converges on very small step. In the case of proportion estimation in a mixed distribution which has very big incomplete data or of update of new data continuously, however, EM algorithm highly depends on a initial value with slow convergence ratio. There have been many studies to improve the convergence rate of EM algorithm in estimating the proportion parameter of a mixed data. Among them, dynamic EM algorithm by Hurray Jorgensen and Titterington algorithm by D. M. Titterington are proven to have better convergence rate than the standard EM algorithm, when a new data is continuously updated. In this paper we suggest dynamic EM algorithm and Titterington algorithm for the estimation of a mixed Poisson distribution and compare them in terms of convergence rate by using a simulation method.
해체 원전에서 총 폐기물의 약 70~80%에 해당하는 많은 양의 콘크리트 폐기물은 해체 폐기물의 대부분을 차지한다. 해체 시 발생된 콘크리트 폐기물은 핵종별 농도에 따라 규제해제 폐기물과 방사성폐기물로 정의할 수 있다. 따라서, 방사성 콘크리트 폐기물의 처분 비용을 저감하기 위하여 자체 처분 및 제한적 재활용을 위한 제염 작업의 수행이 중요하다. 그러므로 콘크리트 폐기물의 효율적인 제염 작업을 위해 내부 방사능 분포를 예측하는 것이 필수적이다. 본 연구는 원전 해체 시, 발생되는 콘크리트 폐기물의 내부 방사능 분포를 예측하기 위하여 다양한 컴프턴 영상 재구성 방법의 성능을 비교하였다. 다양한 컴프턴 영상 재구성 방법으로 단순 역투사(SBP), 필터 후 역투사(FBP), 최대우도 기댓값 최대화 방법(MLEM), 그리고 기존의 MLEM의 시스템 반응 함수에 에너지 정보가 결합되어 확률적으로 계산하는 최대우도 기댓값 최대화 방법(E-MLEM)이 사용되었다. 재구성된 영상을 획득한 후, 정량적인 분석 방법을 이용하여 재구성된 영상의 성능을 정량적으로 비교 및 평가하였다. MLEM 및 E-MLEM 영상 재구성 방법은 각각 재구성된 영상에서 높은 이미지 분해능과 신호 대 잡음비를 유지하는 데 있어 가장 좋은 성능을 보여주었다. 본 연구에서 도출된 결과들은 원자력 시설 해체 시 방사성 콘크리트 폐기물의 내부 방사능 분포를 예측하기 위한 수단으로 컴프턴 영상을 사용할 수 있는 가능성을 보여주었다.
본 논문에서는 비디오 부호화에서 움직임 추정을 위한 고속 알고리즘을 제안한다. 기존의 고속 움직임 예측 방법들은 프레임에 따라 예측화질이 현저히 떨어지는 문제점을 가지고 있으며, 전영역 탐색기반의 향상 방법들은 계산량 감축이 높지 않은 문제점을 지니고 있다. 본 논문에서는 전영역 탐색기반의 방법에 비하여 예측화질은 거의 같게 유지하면서 불필요한 계산량을 현저히 줄이는 알고리즘을 제안한다. 제안하는 방법은 움직임 벡터의 확률분포와 적응적인 탐색 패턴 및 적응적인 블록매칭기준을 이용한다. 움직임 벡터의 확률분포에 따라 탐색패턴을 달리하며, 블록매칭 기준의 비교값을 다르게 함으로써 예측화질을 유지하면서 계산량만 효율적으로 감축할 수 있다. 제안한 알고리즘은 기존의 전영역 탐색 기반인 H.264 PDE 고속 알고리즘과 비교하여 예측 화질의 저하가 0~0.02dB이며, 소요된 계산량은 20%~30%정도이다. 제안한 알고리즘은 MPEG-2 및 MPEG-4 AVC를 이용하는 실시간 비디오 압축 응용분야에 유용하게 사용될 수 있을 것이다.
Although existing algorithms can predict wind speed using historical observation data, for engineering feasibility, most use moment methods and probability density functions to estimate fitted parameters. However, extreme wind speed prediction accuracy for long-term return periods is not always dependent on how the optimized frequency distribution curves are obtained; long-term return periods emphasize general distribution effects rather than marginal distributions, which are closely related to potential extreme values. Moreover, there are different wind speed parent sample types; how to theoretically select the proper extreme value distribution is uncertain. The influence of different sampling time intervals has not been evaluated in the fitting process. To overcome these shortcomings, updated steps are introduced, involving parameter sensitivity analysis for different sampling time intervals. The extreme value prediction accuracy of unknown parent samples is also discussed. Probability analysis of mean wind is combined with estimation of the probability plot correlation coefficient and the maximum likelihood method; an iterative estimation algorithm is proposed. With the updated steps and comparison using a Monte Carlo simulation, a fitting policy suitable for different parent distributions is proposed; its feasibility is demonstrated in extreme wind speed evaluations at Longhua and Chuansha meteorological stations in Shanghai, China.
In frequency analyses of hydrological data, it is necessary for the interested variables to be homogenous and independent. However, recent evidences have shown that the occurrence of extreme hydro-meteorological events is influenced by large-scale climate variability, and the assumption of homogeneity does not generally hold anymore. Therefore, in order to associate the non-homogenous characteristics of hydro-meteorological variables, we propose the parameter estimation method of probability models using meta-heuristic algorithms, specifically harmony search. All the weather stations in South Korea were employed to demonstrate the performance of the proposed approaches. The results showed that the proposed parameter estimation method using harmony search is a comparativealternative for the probability distribution of the non-homogenous hydro-meteorological variables data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.