• Title/Summary/Keyword: estimation method

Search Result 13,362, Processing Time 0.046 seconds

Speed Estimation of Induction Motor in Steady State Using the RSH (RSH를 이용한 정상상태 운전 유도전동기의 회전속도 추정)

  • Yang, Chul-Oh;Park, Kyu-Nam;Song, Myung-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.9
    • /
    • pp.1783-1787
    • /
    • 2011
  • The slip frequency is included in feature frequency for fault diagnosis of rotor bar, so rotating rotor speed is needed. In this study, rotor slot harmonic(RSH) method is suggested for speed estimation of induction motor. When the rotor is rotating, motor current signal include the harmonic signal of back-emf voltage related with number of rotor slot. So from the power spectrum of current signal, the rotor speed can be founded. This method of rotor speed estimation gives the slip frequency, and the feature frequency of rotor bar fault can be calculated. Comparing with stroboscope speed meter, the error rate of suggested method is less than 0.1[%].

Estimation of the Evoked Potential using Bispectrum with Confidence Thresholding (Bispectrum을 이용한 EP 신호 복원에서의 Wiener process 응용)

  • Park, J.I.;Ahn, C.B.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.11
    • /
    • pp.265-268
    • /
    • 1995
  • Signal averaging technique to improve signal-to-noise ratio has widely been used in various fields, especially in electrophysiology. Estimation of the EP(evoked potential) signal using the conventional averaging method fails to correctly reconstruct the original signal under EEG(electroencephalogram) noise especial]y when the latency times of the evoked potential are not identical. Therefore, a technique based on the bispectrum averaging was proposed for recovering signal waveform from a set o noisy signals with variable signal dalay. In this paper an improved bispectrum estimation technique of the RP signal is proposed using a confidence thresholding of the EP signal in frequency domain in which energy distribution of the EP signal is usually not uniform. The suggested technique is coupled with the conventional bispectrum estimation technique such as least square method and recursive method. Some results with simulated data and real EP signal are shown.

  • PDF

Discriminant Analysis of Binary Data with Multinomial Distribution by Using the Iterative Cross Entropy Minimization Estimation

  • Lee Jung Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.1
    • /
    • pp.125-137
    • /
    • 2005
  • Many discriminant analysis models for binary data have been used in real applications, but none of the classification models dominates in all varying circumstances(Asparoukhov & Krzanowski(2001)). Lee and Hwang (2003) proposed a new classification model by using multinomial distribution with the maximum entropy estimation method. The model showed some promising results in case of small number of variables, but its performance was not satisfactory for large number of variables. This paper explores to use the iterative cross entropy minimization estimation method in replace of the maximum entropy estimation. Simulation experiments show that this method can compete with other well known existing classification models.

Estimation of Defect Clustering Parameter Using Markov Chain Monte Carlo (Markov Chain Monte Carlo를 이용한 반도체 결함 클러스터링 파라미터의 추정)

  • Ha, Chung-Hun;Chang, Jun-Hyun;Kim, Joon-Hyun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.3
    • /
    • pp.99-109
    • /
    • 2009
  • Negative binomial yield model for semiconductor manufacturing consists of two parameters which are the average number of defects per die and the clustering parameter. Estimating the clustering parameter is quite complex because the parameter has not clear closed form. In this paper, a Bayesian approach using Markov Chain Monte Carlo is proposed to estimate the clustering parameter. To find an appropriate estimation method for the clustering parameter, two typical estimators, the method of moments estimator and the maximum likelihood estimator, and the proposed Bayesian estimator are compared with respect to the mean absolute deviation between the real yield and the estimated yield. Experimental results show that both the proposed Bayesian estimator and the maximum likelihood estimator have excellent performance and the choice of method depends on the purpose of use.

Nonlinear Observer Design for Satellite Angular Rate Estimation by SDRE Method (SDRE 기법을 이용한 위성 각속도 추정용 비선형 관측기 설계)

  • Jin, Jaehyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.10
    • /
    • pp.816-822
    • /
    • 2014
  • The estimation of the angular rate of a satellite has been discussed. A nonlinear observer has been proposed based on the state-dependent Riccati equation method. A sufficient stability condition for the convergence of estimation error has been presented. This condition is related to a state-dependent algebraic Riccati equation. It has been derived by transforming nonlinear error dynamics into a Lipschitz nonlinearity. An observer gain is obtained from this condition. Numerical simulations are presented to verify the proposed method.

GA-Based Fuzzy Kalman Filter for Tracking the Maneuvering Target

  • Noh, Sun-Young;Lee, Bum-Jik;Joo, Young-Hoon;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1500-1504
    • /
    • 2005
  • This paper proposes the design methodology of genetic algorithm (GA)-based fuzzy Kalman filter for tracking the maneuvering target. The performance of the standard Kalman Filter (SKF) has been degraded because mismatches between the modeled target dynamics and the actual target dynamics. To solve this problem, we use the method to estimate the increment of acceleration by a fuzzy system using the relation between maneuver filter residual and non-maneuvering one. To optimize the fuzzy system, a genetic algorithm (GA) is utilized and this is then tuned by the fuzzy logic correction. Finally, the tracking performance of the proposed method has been compared with those of the input estimation (IE) technique and the intelligent input estimation (IIE) through computer simulations.

  • PDF

Localization of Mobile Robot using Local Map and Kalman Filtering (지역 지도와 칼만 필터를 이용한 이동 로봇의 위치 추정)

  • Lim, Byung-Hyun;Kim, Yeong-Min;Hwang, Jong-Sun;Ko, Nak-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1227-1230
    • /
    • 2003
  • In this paper, we propose a pose estimation method using local map acquired from 2d laser range finder information. The proposed method uses extended kalman filter. The state equation is a navigation system equation of Nomad Super Scout II. The measurement equation is a map-based measurement equation using a SICK PLS 101-112 sensor. We describe a map consisting of geometric features such as plane, edge and corner. For pose estimation we scan external environments by laser rage finer. And then these data are fed to kalman filter to estimate robot pose and position. The proposed method enables very fast simultaneous map building and pose estimation.

  • PDF

Variance function estimation with LS-SVM for replicated data

  • Shim, Joo-Yong;Park, Hye-Jung;Seok, Kyung-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.5
    • /
    • pp.925-931
    • /
    • 2009
  • In this paper we propose a variance function estimation method for replicated data based on averages of squared residuals obtained from estimated mean function by the least squares support vector machine. Newton-Raphson method is used to obtain associated parameter vector for the variance function estimation. Furthermore, the cross validation functions are introduced to select the hyper-parameters which affect the performance of the proposed estimation method. Experimental results are then presented which illustrate the performance of the proposed procedure.

  • PDF

Motion Boundary Detection and Motion Vector Estimation by spatio-temporal Gradient Method using a New Spatial Gradient (새로운 공간경사를 사용한 시공간 경사법에 의한 운동경계 검출 및 이동벡터 추정)

  • 김이한;김성대
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.2
    • /
    • pp.59-68
    • /
    • 1993
  • The motion vector estimation and motion boundary detection have been briskly studied since they are an important clue for analysis of object structure and 3-d motion. The purpose of this researches is more exact estimation, but there are two main causes to make inaccurate. The one is the erroneous measurement of gradients in brightness values and the other is the blurring of motion boundries which is caused by the smoothness constraint. In this paper, we analyze the gradient measurement error of conventional methods and propose new technique based on it. When the proposed method is applied to the motion boundary detection in Schunck and motion vector estimation in Horn & Schunck, it is shown to have much better performance than conventional method is some artificial and real image sequences.

  • PDF

Kalman Filtering with Optimally Scheduled Measurements in Bandwidth Limited Communication Media

  • Pasand, Mohammad Mahdi Share;Montazeri, Mohsen
    • ETRI Journal
    • /
    • v.39 no.1
    • /
    • pp.13-20
    • /
    • 2017
  • A method is proposed for scheduling sensor accesses to the shared network in a networked control system. The proposed method determines the access order in which the sensors are granted medium access through minimization of the state estimation error covariance. Solving the problem by evaluating the error covariance for each possible ordered set of sensors is not practical for large systems. Therefore, a convex optimization problem is proposed, which yields approximate yet acceptable results. A state estimator is designed for the augmented system resulting from the incorporation of the optimally chosen communication sequence in the plant dynamics. A car suspension system simulation is conducted to test the proposed method. The results show promising improvement in the state estimation performance by reducing the estimation error norm compared to round-robin scheduling.