• Title/Summary/Keyword: essential residue

Search Result 109, Processing Time 0.024 seconds

Identification of an Essential Tryptophan Residue Residue in Alliinase from Garlic (Allium sativum) by Chemical Modification

  • Jin, Yeong Nam;Choe, Yong Hun;Yang, Cheol Hak
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.1
    • /
    • pp.68-76
    • /
    • 2001
  • We have employed chemical modification to identify amino acids essential for the catalytic activity of alliinase (EC 4.4.1.4) from garlic (Allium sativum). Alliinase degrades S-alkyl-L cysteine sulfoxides, causing the characteristic odor of garlic. The activity of alliinase was rapidly and completely inactivated by N-bromosuccinimide(NBS) and slightly decreased by succinic anhydride and N-acetylimidazole. These results indicate that tryptophanyl, lysyl, and tyrosyl residues play an important role in enzyme catalysis. The reaction of alliinase with NBA yielded a characteristic decrease in both the absorbance at 280 nm and the intrinsic fluorescence at 332 nm with increasing reagent concentration of NBS, consistent with the oxidation of tryptophan residues. Kinetic analysis, fluorometric titration of tryptophans and correlation to residual alliinase activity showed that modification of only one residue present on alliinase led to complete inhibition of alliinase activity. To identify this essential tryptophan residue, we employed chemical modification by NBS in the presence and absence of the protecting substrate analogue, S-ethyl-L-cysteine (SEC) and N-terminal sequence analysis of peptide fragment isolated by reverse phase-HPLC. A fragment containing residues 179-188 was isolated. We conclude that Trp182 is essential for alliinase activity.

Effect of Ginseng Residue Extract on Yeast Growth (효모생육에 미치는 홍삼박의 영향)

  • 김상달;도재호
    • Journal of Ginseng Research
    • /
    • v.10 no.1
    • /
    • pp.1-10
    • /
    • 1986
  • To evaluate the possible utilization of ginseng by-products, chemical components of ginseng residue, reducing ability of DPPH, effect of residue extract on the yeast growth, amino acid contents of yeast cell, increase of residue extract yield by enzyme treatment were studied. Alcohol and water extract residue contained 43-46% total reducing sugar and 14-15% crude protein, while alcohol extract residue had 0.18% n-BuOH extract. Water extract of alcohol extract residue had about 45% reducing ability of DPPH in comparison with that of alcohol extract from ginseng roots. Essential nutrients for the yeast growth were found in extract when Saccharomyces cerevisiae was cultured in Czapeck medium, a compound medium, with the residue. The addition of residue extract to malt medium, a natural medium, enhanced 30-40% yeast growth. And content of each amino acid in yeast cell cultured on malt medium with ginseng residue extract was much more than that of the cell cultured without ginseng extract, but amino acid composition of yeast cell did not differ from one another. The treatment of alcohol extract residue with cellulase increased 250% yield of residue extract.

  • PDF

Establishing residue limits and GAP in the use of pesticides (농약사용에서의 잔류기준 설정과 GAP)

  • Lee, Su-Rae
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.2
    • /
    • pp.113-121
    • /
    • 2005
  • Consumer protection and prevention of foodborne diseases are essential elements of food safety program for every country The food safety program proposed by WHO was introduced and the importance of GAP in establishing residue limits of intentional additives in food production was emphasized. The procedures and differences in establishing maximum residue limits of pesticides on food crops by Codex Alimentarius Commission and Korea were explained. Finally, considerations in harmonization of Korean standards with Codex MRLs were suggested.

Chemical Modification of the $\beta$-D-Xylosidase from Bacillus stearothermophilus (화학적 수식에 의한 Bacillus stearothermophilus $\beta$-D-Xylosidase 의 연구)

  • 서정한;최용진
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.6
    • /
    • pp.636-642
    • /
    • 1994
  • Essential amino acids involving in the catalytic mechanism of the $\beta$-D-xylosidase of Bacillus stearothermophilus were determined by chemical modification studies. Among various che- mical modifiers tested N-bromosuccinimide (NBS), $\rho$-hydroxymercurybenzoate (PHMB), N-ethylma- leimide, 1-[3-(di-ethylamino)-propyl]$-3-ethylcarbodi-imide (EDC), and Woodward's Reagent K(WRK)inactivated the enzyme, resulting in the residual activity of less than 20%. WRK reduced the enzyme activity by modifying carboxylic amino acids, and the inactivation reacion proceeded in the form of pseudo-first-order kinetics. The double-lagarithmic plot of the observed pseudo-first- order rate constant against the modifier concentration yielded a reaction order of 2, indicating that two carboxylic amino acids were essential for the enzyme activity. The $\beta$-D-xylosidase was also inactivated by N-ethylmaleimide which specifically modified a cysteine residue with a reaction order of 1, implying that one cysteine residue was important for the enzyme activity. Xylobiose protected the enzyme against inactivation by WRK and N-ethylmaleimide, revealing that carboxylic amino acids and a cysteine residue were present at the substrate-binding site of the enzyme molecule.

  • PDF

Extraction of proteins from soymilk residue using the enzymes from Aspergillus of oryzae (코지균 효소를 이용한 두유박의 단백질 용출)

  • Lee, Sang-Min;Kim, Ze-Uook
    • Applied Biological Chemistry
    • /
    • v.35 no.1
    • /
    • pp.64-67
    • /
    • 1992
  • To extract insoluble proteins of soymilk residue by microorganism, the soymilk residue was treated with crude enzyme solution from Aspergillus oryzae. Optimum conditions of pH, temperature and digestion time were determined, and amino acid composition of the extract was analyzed. The optimum pH for the extraction was 7.5, and the maximum extraction was obtained at $50^{\circ}C$. Under optimum conditions, the extractability with Koji reached to 70% in 12 hrs. The content of essential amino acids of extract was generally high and the composition of essential amino acid was good.

  • PDF

An Essential Histidine Residue in the Catalytic Mechanism of the Rat Kidney γ-Glutamyl Transpeptidase

  • Kim, Soo-Ja;Ko, Moon-Kyu;Chai, Kyu-Yun;Cho, Seong-Wan;Lee, Woo-Yiel
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.2
    • /
    • pp.271-275
    • /
    • 2007
  • γ -Glutamyl transpeptidase (EC 2.3.2.2) plays a key role in glutathione metabolism by catalyzing the transfer of the γ -glutamyl residue and hydrolysis of glutathione. The functional residues at the active site of the rat kidney γ -glutamyl transpeptidase were investigated by kinetic studies at various pH, the treatment of diethylpyrocarbonate (DEPC), and photooxidation in presence of methylene blue. An ionizable group affecting the enzymatic activity with an apparent pKa value of 7.1, which is in the range of pKa values for a histidine residue in protein, was obtained by examining the pH-dependence of kinetic parameters. The pH effect on the photoinduced inactivation rate of the enzyme corresponds to that expected for the photooxidation of the free histidine. The involvement of a histidine in the catalytic site of the enzyme was further supported by DEPC modification accompanied by an increase in absorbance at 240 nm, indicating the formation of Ncarbethoxyhistidine. The histidine located at the position of 382 in the precursor of the enzyme is primarily suspected based on the amino acid sequence alignment of the transpeptidases from various organisms.

Investigation of thorium separation from rare-earth extraction residue via electrosorption with carbon based electrode toward reducing waste volume

  • Aziman, Eli Syafiqah;Ismail, Aznan Fazli;Muttalib, Nabilla Abdul;Hanifah, Muhammad Syafiq
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2926-2936
    • /
    • 2021
  • Rare-earth (RE) industries generate a massive amount of radioactive residue containing high thorium concentrations. Due to the fact that thorium is considered a non-economic element, large volume of these RE processed residues are commonly disposed of without treatment. It is essential to study an appropriate treatment that could reduce the volume of waste for final disposition. To this end, this research investigates the applicability of carbon-based adsorbent in separating thorium from aqueous phase sulphate is obtained from the cracking and leaching process of solid rare-earth by-product residue. Adsorption of thorium from the aqueous phase sulphate by carbon-based electrodes was investigated through electrosorption experiments conducted at a duration of 180 minutes with a positive potential variable range of +0.2V to +0.6V (vs. Ag/AgCl). Through this research, the specific capacity obtained was equivalent to 1.0 to 5.14 mg-Th/g-Carbon. Furthermore, electrosorption of thorium ions from aqueous phase sulphate is found to be most favorable at a higher positive potential of +0.6V (vs. Ag/AgCl). This study's findings elucidate the removal of thorium from the rare-earth residue by carbon-based electrodes and simultaneously its potential to reduce disposal waste of untreated residue.

Evaluating sulfoxaflor residues in pig tissues using animal modeling

  • Hyun-Woo, Cho;Kangmin, Seo;Jin Young, Jeong;Ju Lan, Chun;Ki Hyun, Kim
    • Journal of Animal Science and Technology
    • /
    • v.64 no.5
    • /
    • pp.911-921
    • /
    • 2022
  • Maximum residue limits (MRL) for pesticides in feed have been set to protect public health and produce safe livestock products. In vivo experiments to establish MRL are essential, as livestock are commonly used to obtain reliable in vivo quantitative information. Here, we aimed to evaluate whether small laboratory animals can replace or reduce monogastric livestock in experiments to quantify pesticide residues in vivo after oral consumption through feed. First, 24 pigs and rats were randomly assigned to four groups and fed 0, 3, 9, or 30 mg/kg of sulfoxaflor. After four weeks, serum, muscle, fat, liver, kidney, and small intestine samples were collected, and sulfoxaflor residues were analyzed using liquid chromatography - tandem mass spectrometry. Sulfoxaflor residues in pig tissues were significantly correlated with those in rat tissues. Model equations were formulated based on the residual sulfoxaflor amount in pig and rat tissues. The calculated and measured sulfoxaflor residues in pigs and rats showed more than 90% similarity. Sulfoxaflor did not affect body weight gain, feed intake, or the feed conversion ratio. Therefore, we concluded that pesticide residue quantification in vivo to establish MRL could be performed using small laboratory animals instead of livestock animals. This would contribute to obtaining in vivo pesticide residue information and reducing large-scale livestock animal experiments.

Effect of fermented biogas residue on growth performance, serum biochemical parameters, and meat quality in pigs

  • Xu, Xiang;Li, Lv-mu;Li, Bin;Guo, Wen-jie;Ding, Xiao-ling;Xu, Fa-zhi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.10
    • /
    • pp.1464-1470
    • /
    • 2017
  • Objective: This study investigated the effect of fermented biogas residue (FBR) of wheat on the performance, serum biochemical parameters, and meat quality in pigs. Methods: We selected 128 pigs (the mean initial body weight was $40.24{\pm}3.08kg$) and randomly allocated them to 4 groups (1 control group and 3 treatment groups) with 4 replicates per group and 8 pigs per pen in a randomized complete block design based on initial body weight and sex. The control group received a corn-soybean meal-based diet, the treatment group fed diets containing 5%, 10%, and 15% FBR, respectively (abbreviated as FBR5, FBR10, and FBR15, respectively). Every group received equivalent-energy and nitrogen diets. The test lasted 60 days and was divided into early and late stages. Blood and carcass samples were obtained on 60 d. Meat quality was collected from two pigs per pen. Results: During the late stage, the average daily feed intake and average daily gain of the treatment groups was greater than that of the control group (p<0.05). During the entire experiment, the average daily gain of the treatment groups was higher than that of the control group (p<0.05). Fermented biomass residue did not significantly affect serum biochemical parameters or meat quality, but did affect amino acid profiles in pork. The contents of Asp, Arg, Tyr, Phe, Leu, Thr, Ser, Lys, Pro, Ala, essential amino acids, non-essential amino acids, and total amino acids in pork of FBR5 and FBR10 were greater than those of the control group (p<0.05). Conclusion: These combined results suggest that feeding FBR could increase the average daily gain and average daily feed intake in pigs and the content of several flavor-promoting amino acids.

Impact of Waste Coffee Residue Disposal on the Environment and Anti-microbic Activity of Oyster Shell Waste

  • Ramakrishna, Chilakala;Thenepalli, Thriveni;Nam, Seong Young;Kim, Chunsik;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.27 no.1
    • /
    • pp.76-80
    • /
    • 2018
  • The objective of this research paper is to discuss the waste coffee residue disposal and its environmental effects on the environment. As we know, coffee is one of the most demand and swallowed beverages in the world, which leads to large quantities of solid waste. Which can be toxic and a lot of environmental problems occur. In developing countries, there is a lack of proper coffee waste residue management. The coffee beans and residues contain several organic compounds. The wastewater from coffee industry emitted several pollutants (highly concentrated) and it contaminates the soil, ground waters, aquatic life, and also human health. Hence it is essential to treat the coffee waste residues. Mean while, oyster shell waste and its disposal also a big environmental challenge in the coastal regions of southeast Korea. In this paper, we focused the treatment of coffee waste residue with oyster shell waste powder. Primarily, oyster shells are calcinated at higher temperatures and investigated the calcined CaO powder as an anti microbic agent to the bacteria presented in coffee waste residues. We successfully applied calcium oxide from oyster shell waste, as an antimicrobic agent.