• Title/Summary/Keyword: essential maps

Search Result 156, Processing Time 0.022 seconds

Extraction of Geomagnetic Field from KOMSAT-1 Three-Axis Magnetometer Data

  • Hwang, Jong-Sun;Lee, Sun-Ho;Min, Kyung-Duck;Kim, Jeong-Woo
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.242-242
    • /
    • 2002
  • The Earth's magnetic field acquired from KOMPSAT-1's TAM (Three-Axis Magnetometer) between June 19th and 21st 2000 was analyzed. The TAM, one of the KOMPSAT-1's Attitude and Orbit Control Subsystems, plays an important role in determining and controlling the satellite's attitude. This also can provide new insight on the Earth's magnetic field. By transforming the satellite coordinate from ECI to ECEF, spherical coordinate of total magnetic field was achieved. These data were grouped into dusk (ascending) and dawn (descending) data sets, based on their local magnetic times. This partitioning is essential for performing 1-D WCA (Wavenumber Correlation Analysis). Also, this enhances the perception of external fields in the Kompsat-1's TAM magnetic maps that were compiled according to different local. The dusk and dawn data are processed independently and then merged to produce a total field magnetic anomaly map. To extract static and dynamic components, the 1-D and 2-D WCAs were applied to the sub-parallel neighboring tracks and dawn-dusk data sets. The static components were compared with the IGRF, the global spherical harmonic magnetic field model. The static and dynamic components were analyzed in terms of corefield, external, and crustal signals based on their origins.

  • PDF

Estimation of Probable Maximum Precipitation in Thailand Using Geographic Information System

  • Kingpaiboon, Sununtha;Netwong, Titiya
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.804-806
    • /
    • 2003
  • Probable Maximum Precipitation (PMP) is essential in the design of hydraulic structures such as dams, weirs and flood control structures. Up to the present, PMP has been derived from any proper single storm which can have a large error. PMP values should be evaluated from many historic heavy storm events from all over the country. Since this can be done at the spots of storm occurring and the calculated PMP from all spots in the country can be correlated. The objectives of this study are therefore to evaluate PMP from historic heavy storm data from 1972 to 2000 by using meteorological method, then to correlate and to present the results using GIS. The maximized rainfall depths can be calculate from depth of heavy rainfall and dew point temperature, and then can be analyzed for each rainfall duration to obtain spatial rainfall distribution by using GIS. The depth-area-duration relationship of maximized rainfall can be obtained and this helps to develop enveloped curves . The results from this study are a set of contour maps of PMP for each rainfall duration for all over the country and the depth-area-duration relationships for the area of 100 to 50,000 km.$^{2}$ at duration of 1, 2 and 3 days.

  • PDF

EBSD studies on microstructure and crystallographic orientation of UO2-Mo composite fuels

  • Tummalapalli, Murali Krishna;Szpunar, Jerzy A.;Prasad, Anil;Bichler, Lukas
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4052-4059
    • /
    • 2021
  • The microstructure of the fuel pellet plays an essential role in fission gas buildup and release and is critical for the safe and continued operation of nuclear power stations. Structural analysis of uranium dioxide (UO2)-molybdenum (Mo) composite fuel pellets prepared at a range of sintering temperatures from 1300 to 1800 ℃ was performed. Mo micro and nanoparticles were used in making the composite pellets. A systematic investigation into the influence of processing parameters during Spark Plasma Sintering (SPS) of the pellets on the microstructure, texture, grain size, and grain boundary characters of UO2-Mo is presented. UO2-Mo composite show significant differences in the fraction of general boundaries and also special/coincident site lattice (CSL) boundaries. EBSD orientation maps demonstrated that <111> texturing was observed in the pellets fabricated at 1500 ℃. The experimental investigations suggest that UO2-Mo composite pellets have favorable microstructural features compared to the UO2 pellet.

Impact of Vegetation Heterogeneity on Rainfall Excess in FLO-2D Model : Yongdam Catchment (용담댐 유역에서 식생 이질성이 FLO-2D 유량 산정에 미치는 영향)

  • Song, Hojun;Lee, Khil-Ha
    • Journal of Environmental Science International
    • /
    • v.28 no.2
    • /
    • pp.259-266
    • /
    • 2019
  • Two main sources of data, meteorological data and land surface characteristics, are essential to effectively run a distributed rainfall-runoff model. The specification and averaging of the land surface characteristics in a suitable way is crucial to obtaining accurate runoff output. Recent advances in remote sensing techniques are often being used to derive better representations of these land surface characteristics. Due to the mismatch in scale between digital land cover maps and numerical grid sizes, issues related to upscaling or downscaling occur regularly. A specific method is typically selected to average and represent the land surface characteristics. This paper examines the amount of flooding by applying the FLO-2D routing model, where vegetation heterogeneity is manipulated using the Manning's roughness coefficient. Three different upscaling methods, arithmetic, dominant, and aggregation, were tested. To investigate further, the rainfall-runoff model with FLO-2D was facilitated in Yongdam catchment and heavy rainfall events during wet season were selected. The results show aggregation method provides better results, in terms of the amount of peak flow and the relative time taken to achieve it. These rwsults suggest that the aggregation method, which is a reasonably realistic description of area-averaged vegetation nature and characteristics, is more likely to occur in reality.

Digital mapping of soil carbon stock in Jeolla province using cubist model

  • Park, Seong-Jin;Lee, Chul-Woo;Kim, Seong-Heon;Oh, Taek-Keun
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.1097-1107
    • /
    • 2020
  • Assessment of soil carbon stock is essential for climate change mitigation and soil fertility. The digital soil mapping (DSM) is well known as a general technique to estimate the soil carbon stocks and upgrade previous soil maps. The aim of this study is to calculate the soil carbon stock in the top soil layer (0 to 30 cm) in Jeolla Province of South Korea using the DSM technique. To predict spatial carbon stock, we used Cubist, which a data-mining algorithm model base on tree regression. Soil samples (130 in total) were collected from three depths (0 to 10 cm, 10 to 20 cm, 20 to 30 cm) considering spatial distribution in Jeolla Province. These data were randomly divided into two sets for model calibration (70%) and validation (30%). The results showed that clay content, topographic wetness index (TWI), and digital elevation model (DEM) were the most important environmental covariate predictors of soil carbon stock. The predicted average soil carbon density was 3.88 kg·m-2. The R2 value representing the model's performance was 0.6, which was relatively high compared to a previous study. The total soil carbon stocks at a depth of 0 to 30 cm in Jeolla Province were estimated to be about 81 megatons.

Smart Information Facilities as Knowledge Based Spacial System - Case Study of Information Facility Layout - (스마트 정보시설 디자인 차별화 유형 - 정보시설 배치계획 사례를 중심으로 -)

  • Kimm, Woo-Young
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.9
    • /
    • pp.3-8
    • /
    • 2018
  • In the social information facilities with physical stacks, it is critical to arrange categories of knowledge since there should be conventional methods by which users and visitors can browse index of all sorts of media relating to their topics. The classical index system of knowledge has been developed with primitive libraries and museums and therefore the system can be addressed by analyzing typical cases of precedents. As the forth industrial revolution has emerged, there will be quite innovative approach to provide information to the public as well as the private. The coalition between knowledge and space has always been considered as essential characteristics that remind scholars of hierarchical layout of knowledge resources such as maps, books, documents and diverse specimens. This research assumes that the spatial layout of knowledge can be classified in terms of physical attributes, symbolic entities, and information media and it defines what coalition between knowledge and space is creative in order to enacting interactive dialogue among information navigators. The spaces in between the knowledges function as trasition areas where the index system informs and stimulates, where the interface between the different knowledges is optimized and therefore the library as the public facilities no longer dedicated to the text, but as an information space in which all sorts of media are distributed equally.

A Review on Remote Sensing and GIS Applications to Monitor Natural Disasters in Indonesia

  • Hakim, Wahyu Luqmanul;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1303-1322
    • /
    • 2020
  • Indonesia is more prone to natural disasters due to its geological condition under the three main plates, making Indonesia experience frequent seismic activity, causing earthquakes, volcanic eruption, and tsunami. Those disasters could lead to other disasters such as landslides, floods, land subsidence, and coastal inundation. Monitoring those disasters could be essential to predict and prevent damage to the environment. We reviewed the application of remote sensing and Geographic Information System (GIS) for detecting natural disasters in the case of Indonesia, based on 43 articles. The remote sensing and GIS method will be focused on InSAR techniques, image classification, and susceptibility mapping. InSAR method has been used to monitor natural disasters affecting the deformation of the earth's surface in Indonesia, such as earthquakes, volcanic activity, and land subsidence. Monitoring landslides in Indonesia using InSAR techniques has not been found in many studies; hence it is crucial to monitor the unstable slope that leads to a landslide. Image classification techniques have been used to monitor pre-and post-natural disasters in Indonesia, such as earthquakes, tsunami, forest fires, and volcano eruptions. It has a lack of studies about the classification of flood damage in Indonesia. However, flood mapping was found in susceptibility maps, as many studies about the landslide susceptibility map in Indonesia have been conducted. However, a land subsidence susceptibility map was the one subject to be studied more to decrease land subsidence damage, considering many reported cases found about land subsidence frequently occur in several cities in Indonesia.

A study for management strategies through the spatial analysis of damaged Jeongmaek in South Korea (정맥 훼손현황의 공간적 분석을 통한 관리방향 제안 연구)

  • Lim, No Ol;Lee, Sang-WooK;Sung, Hyun Chan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.27 no.5
    • /
    • pp.27-40
    • /
    • 2024
  • Mountain ranges are crucial not only as habitats for biodiversity but also as sources of diverse ecosystem services essential to human well-being. In South Korea, the Baekdudaegan mountain range is protected for its natural and cultural significance. However, the subsidiary mountain ranges, known as Jeongmaeks, remain vulnerable to urbanization due to inadequate protection and management plans. This study aims to assess the impact of urbanization on Jeongmaek areas, utilizing the 'Environmental Impact Assessment Guideline for Baekdudaegan and Jeongmaek' to inform future management strategies. Damage was identified urbanized areas in land cover maps and EIA target areas, and loss of ecological connectivity. The results indicate that the Jeongmaeks near densely populated regions, such as the Seoul Metropolitan Area (Hannam and Hankbuk Jeongmaek), have suffered significant fragmentation, primarily due to road and rail construction. These areas should be managed as recreational zones, integrating natural parks and entertainment facilities to promote sustainable use of natural resources. Conversely, the Jeongmaeks located both near and further from urban centers, such as Nakdong and Naknam Jeongmaek, exhibit a mix of severely damaged and well-preserved areas. For these regions, a balanced management approach that integrated both conservation and sustainable use in recommended to ensure ecological resilience.

Prediction of Mechanical Properties based on Vickers Hardenss according to the Recrystallization Fraction of Ta-10W Alloy Tube (Ta-10W 합금 관재의 재결정 분율에 따른 비커스 경도 기반 기계적 물성 예측)

  • K.S. Park;S.-H. Choi
    • Transactions of Materials Processing
    • /
    • v.33 no.6
    • /
    • pp.403-412
    • /
    • 2024
  • This study investigates the mechanical properties of partially and fully recrystallized Ta-10W alloy tubes through Vickers hardness measurements and tensile testing, employing the Digital Image Correlation (DIC) technique. The hardness and tensile behavior were analyzed with respect to positional variations along both the thickness and circumferential directions. Partially recrystallized Tube A exhibited a non-uniform hardness distribution, whereas fully recrystallized Tube B demonstrated uniform hardness. Tensile tests revealed yield point elongation (YPE) in both samples, although no localized deformation zones (Lüders bands) were observed in the strain distribution maps. A linear correlation between Vickers hardness and yield strength was confirmed, with an accuracy of 90.1%. The Swift non-linear hardening equation was applied to precisely determine the hardening coefficient (k), hardening exponent (n), and initial strain (ε0). This approach provides an effective method for predicting the mechanical properties of Ta-10W alloy based on hardness data under room temperature and quasi-static conditions. Consequently, this study offers essential foundational data for predicting the mechanical properties of Ta-10W alloy.

A Study on the Application of IUCN Global Ecosystem Typology Using Land Cover Map in Korea (토지피복지도를 활용한 IUCN 생태계유형분류 국내 적용)

  • Hee-Jung Sohn;Su-Yeon Won;Jeong-Eun Jeon;Eun-Hee Park;Do-Hee Kim;Sang-Hak Han;Young-Keun Song
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.3
    • /
    • pp.209-220
    • /
    • 2023
  • Over the past few centuries, widespread changes to natural ecosystems caused by human activities have severely threatened biodiversity worldwide. Understanding changes in ecosystems is essential to identifying and managing threats to biodiversity. In line with this need, the IUCN Council formed the IUCN Global Ecosystem Typology (GET) in 2019, taking into account the functions and types of ecosystems. The IUCN provides maps of 10 ecosystem groups and 108 ecological functional groups (EFGs) on a global scale. According to the type classification of IUCN GET ecosystems, Korea's ecosystem is classified into 8 types of Realm (level 1), 18 types of Biome (level 2), and 41 types of Group (level 3). GETs provided by IUCN have low resolution and often do not match the actual land status because it was produced globally. This study aimed to increase the accuracy of Korean IUCN GET type classification by using land cover maps and producing maps that reflected the actual situation. To this end, we ① reviewed the Korean GET data system provided by IUCN GET and ② compared and analyzed it with the current situation in Korea. We evaluated the limitations and usability of the GET through the process and then ③ classified Korea's new Get type reflecting the current situation in Korea by using the national data as much as possible. This study classified Korean GETs into 25 types by using land cover maps and existing national data (Territorial realm: 9, Freshwater: 9, Marine-territorial: 5, Terrestrial-freshwater: 1, and Marine-freshwater-territorial: 1). Compared to the existing map, "F3.2 Constructed lacustrine wetlands", "F3.3 Rice paddies", "F3.4 Freshwater aquafarms", and "T7.3 Plantations" showed the largest area reduction in the modified Korean GET. The area of "T2.2 Temperate Forests" showed the largest area increase, and the "MFT1.3 Coastal saltmarshes and reedbeds" and "F2.2 Small permanent freshwater lakes" types also showed an increase in GET area after modification. Through this process, the existing map, in which the sum of all EFGs in the existing GET accounted for 8.33 times the national area, was modified so that the total sum becomes 1.22 times the national area using the land cover map. This study confirmed that the existing EFG, which had small differences by type and low accuracy, was improved and corrected. This study is significant in that it produced a GET map of Korea that met the GET standard using data reflecting the field conditions.