DOI QR코드

DOI QR Code

EBSD studies on microstructure and crystallographic orientation of UO2-Mo composite fuels

  • Tummalapalli, Murali Krishna (Department of Mechanical Engineering, University of Saskatchewan) ;
  • Szpunar, Jerzy A. (Department of Mechanical Engineering, University of Saskatchewan) ;
  • Prasad, Anil (School of Engineering, University of British Columbia) ;
  • Bichler, Lukas (School of Engineering, University of British Columbia)
  • Received : 2021.02.14
  • Accepted : 2021.06.15
  • Published : 2021.12.25

Abstract

The microstructure of the fuel pellet plays an essential role in fission gas buildup and release and is critical for the safe and continued operation of nuclear power stations. Structural analysis of uranium dioxide (UO2)-molybdenum (Mo) composite fuel pellets prepared at a range of sintering temperatures from 1300 to 1800 ℃ was performed. Mo micro and nanoparticles were used in making the composite pellets. A systematic investigation into the influence of processing parameters during Spark Plasma Sintering (SPS) of the pellets on the microstructure, texture, grain size, and grain boundary characters of UO2-Mo is presented. UO2-Mo composite show significant differences in the fraction of general boundaries and also special/coincident site lattice (CSL) boundaries. EBSD orientation maps demonstrated that <111> texturing was observed in the pellets fabricated at 1500 ℃. The experimental investigations suggest that UO2-Mo composite pellets have favorable microstructural features compared to the UO2 pellet.

Keywords

Acknowledgement

The authors gratefully acknowledge the financial support of the Natural Sciences and Engineering Research Council (NSERC) Canada. The authors sincerely acknowledge the Sylvia Fedoruk Canadian Centre for Nuclear Innovation (Fedoruk Center) for their unconditional support.

References

  1. K. Gofryk, S. Du, C.R. Stanek, J.C. Lashley, X.Y. Liu, R.K. Schulze, J.L. Smith, D.J. Safarik, D.D. Byler, K.J. McClellan, B.P. Uberuaga, B.L. Scott, D.A. Andersson, Anisotropic thermal conductivity in uranium dioxide, Nat. Commun. 5 (2014) 1-7, https://doi.org/10.1038/ncomms5551.
  2. M. Lenzen, Current state of development of electricity-generating technologies: a literature review, Energies 3 (2010) 462-591, https://doi.org/10.3390/en3030462.
  3. S. Yeo, E. McKenna, R. Baney, G. Subhash, J. Tulenko, Enhanced thermal conductivity of uranium dioxide-silicon carbide composite fuel pellets prepared by Spark Plasma Sintering (SPS), J. Nucl. Mater. 433 (2013) 66-73, https://doi.org/10.1016/j.jnucmat.2012.09.015.
  4. S.C. Finkeldei, J.O. Kiggans, R.D. Hunt, A.T. Nelson, K.A. Terrani, Fabrication of UO2-Mo composite fuel with enhanced thermal conductivity from sol-gel feedstock, J. Nucl. Mater. (2019), https://doi.org/10.1016/j.jnucmat.2019.04.011.
  5. W.J. Weber, A. Navrotsky, S. Stefanovsky, E.R. Vance, E. Vernaz, Materials science of high-level immobilization, MRS Bull. 34 (2009) 46-52. https://doi.org/10.1557/mrs2009.12
  6. L.J. Ott, K.R. Robb, D. Wang, Preliminary assessment of accident-tolerant fuels on LWR performance during normal operation and under DB and BDB accident conditions, J. Nucl. Mater. 448 (2014) 520-533, https://doi.org/10.1016/j.jnucmat.2013.09.052.
  7. L.H. Ortega, B.J. Blamer, J.A. Evans, S.M. McDeavitt, Development of an accident-tolerant fuel composite from uranium mononitride (UN) and uranium sesquisilicide (U3 Si2) with increased uranium loading, J. Nucl. Mater. 471 (2016) 116-121, https://doi.org/10.1016/j.jnucmat.2016.01.014.
  8. X.M. Bai, M.R. Tonks, Y. Zhang, J.D. Hales, Multiscale modeling of thermal conductivity of high burnup structures in UO2 fuels, J. Nucl. Mater. 470 (2016) 208-215, https://doi.org/10.1016/j.jnucmat.2015.12.028.
  9. D.J. Kim, Y.W. Rhee, J.H. Kim, K.S. Kim, J.S. Oh, J.H. Yang, Y.H. Koo, K.W. Song, Fabrication of micro-cell UO2-Mo pellet with enhanced thermal conductivity, J. Nucl. Mater. 462 (2015) 289-295, https://doi.org/10.1016/j.jnucmat.2015.04.003.
  10. J. Hu, A.C. Hayes, W.B. Wilson, Rizwan-Uddin, Fission gas production in reactor fuels including the effects of ternary fission, Nucl. Eng. Des. 240 (2010) 3751-3757, https://doi.org/10.1016/j.nucengdes.2010.08.020.
  11. R.I. Todd, B. Derby, Thermal stress induced microcracking in alumina-20% SiCp composites, Acta Mater. 52 (2004) 1621-1629, https://doi.org/10.1016/j.actamat.2003.12.007.
  12. B.R. Powell, G.E. Youngblood, D.P.H. Hasselman, L.D. Bentsen, Effect of thermal expansion mismatch on the thermal diffusivity of glass-Ni composites, J. Am. Ceram. Soc. 63 (1980) 581-586, https://doi.org/10.1111/j.1151-2916.1980.tb10769.x.
  13. T.C. Lu, J. Yang, Z. Suo, A.G. Evans, R. Hecht, R. Mehrabian, Matrix cracking in intermetallic composites caused by thermal expansion mismatch, Acta Metall. Mater. 39 (1991) 1883-1890, https://doi.org/10.1016/0956-7151(91)90157-V.
  14. S.Y. Fu, X.Q. Feng, B. Lauke, Y.W. Mai, Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites, Compos. B Eng. 39 (2008) 933-961, https://doi.org/10.1016/j.compositesb.2008.01.002.
  15. B. Burton, G.L. Reynolds, J.P. Barnes, The influence of grain size on the creep of uranium dioxide, J. Mater. Sci. 8 (1973) 1690-1694, https://doi.org/10.1007/BF02403517.
  16. J. Watts, G. Hilmas, W.G. Fahrenholtz, Mechanical characterization of ZrB2-SiC composites with varying SiC particle sizes, J. Am. Ceram. Soc. 94 (2011) 4410-4418, https://doi.org/10.1111/j.1551-2916.2011.04885.x.
  17. P.V. Nerikar, K. Rudman, T.G. Desai, D. Byler, C. Unal, K.J. McClellan, S.R. Phillpot, S.B. Sinnott, P. Peralta, B.P. Uberuaga, C.R. Stanek, Grain boundaries in uranium dioxide: scanning electron microscopy experiments and atomistic simulations, J. Am. Ceram. Soc. 94 (2011) 1893-1900, https://doi.org/10.1111/j.1551-2916.2010.04295.x.
  18. J.H. Yang, K.W. Song, Y.W. Lee, J.H. Kim, K.W. Kang, K.S. Kim, Y.H. Jung, Microwave process for sintering of uranium dioxide, J. Nucl. Mater. 325 (2004) 210-216, https://doi.org/10.1016/j.jnucmat.2003.12.003.
  19. I. Amato, R.L. Colombo, A.M.P. Balzari, Hot-pressing of uranium dioxide, J. Nucl. Mater. 20 (1966) 210-214, https://doi.org/10.1016/0022-3115(66)90009-2.
  20. J.H. Yang, Y.W. Kim, J.H. Kim, D.J. Kim, K.W. Kang, Y.W. Rhee, K.S. Kim, K.W. Song, Pressureless rapid sintering of UO2assisted by high-frequency induction heating process, J. Am. Ceram. Soc. 91 (2008) 3202-3206, https://doi.org/10.1111/j.1551-2916.2008.02615.x.
  21. L. Ge, G. Subhash, R.H. Baney, J.S. Tulenko, E. McKenna, Densification of uranium dioxide fuel pellets prepared by spark plasma sintering (SPS), J. Nucl. Mater. 435 (2013) 1-9, https://doi.org/10.1016/j.jnucmat.2012.12.010.
  22. T. Ironman, J. Tulenko, G. Subhash, Exploration of viability of spark plasma sintering for commercial fabrication of nuclear fuel pellets, Nucl. Technol. 200 (2017) 144-158, https://doi.org/10.1080/00295450.2017.1360714.
  23. Y.T. Chen, The effect of interface texture on exchange biasing in Ni80Fe20/Ir20Mn80 system, Nanoscale Res. Lett. 4 (2009) 90-93, https://doi.org/10.1007/s11671-008-9207-4.
  24. X. Wang, F. Fan, J.A. Szpunar, L. Zhang, Influence of grain orientation on the incipient oxidation behavior of Haynes 230 at 900 ℃, Mater. Char. 107 (2015) 33-42, https://doi.org/10.1016/j.matchar.2015.06.029.
  25. C.B. Thomson, V. Randle, The effects of strain annealing on grain boundaries and secure triple junctions in nickel 200, J. Mater. Sci. 32 (1997) 1909-1914, https://doi.org/10.1023/A:1018573327408.
  26. H. Akhiani, M. Nezakat, M. Sanayei, J. Szpunar, The effect of thermomechanical processing on grain boundary character distribution in Incoloy 800H/HT, Mater. Sci. Eng., A 626 (2015) 51-60, https://doi.org/10.1016/j.msea.2014.12.046.
  27. T. Watanabe, Part IV Applications : grain boundary engineering and microstructural design for advanced properties, in: Microstruct. Des. Adv. Eng. Mater., Wiley-VCH Verlag GmbH, Weinheim, Germany, 2013, pp. 403-446, https://doi.org/10.1051/forest.
  28. S. Spigarelli, M. Cabibbo, E. Evangelista, G. Palumbo, Analysis of the creep strength of a low-carbon AISI 304 steel with low-Σ grain boundaries, Mater. Sci. Eng., A 352 (2003) 93-99, https://doi.org/10.1016/S0921-5093(02)00903-6.
  29. V. Randle, Sigma-boundary statistics by length and number, Interface Sci. 10 (2002) 271-277, https://doi.org/10.1023/A:1020877528820.
  30. J.J. Kai, F.R. Chen, T.S. Duh, Effects of grain boundary misorientation on radiation-induced solute segregation in proton irradiated 304 stainless steels, Mater. Trans. 45 (2004) 40-50, https://doi.org/10.2320/matertrans.45.40.
  31. L. Tan, T.R. Allen, J.T. Busby, Grain boundary engineering for structure materials of nuclear reactors, J. Nucl. Mater. 441 (2013) 661-666, https://doi.org/10.1016/j.jnucmat.2013.03.050.
  32. L. Tan, K. Sridharan, T.R. Allen, R.K. Nanstad, D.A. McClintock, Microstructure tailoring for property improvements by grain boundary engineering, J. Nucl. Mater. 374 (2008) 270-280, https://doi.org/10.1016/j.jnucmat.2007.08.015.
  33. S. Xia, H. Li, T.G. Liu, B.X. Zhou, Appling grain boundary engineering to Alloy 690 tube for enhancing intergranular corrosion resistance, J. Nucl. Mater. 416 (2011) 303-310, https://doi.org/10.1016/j.jnucmat.2011.06.017.
  34. E.A. West, G.S. Was, IGSCC of grain boundary engineered 316L and 690 in supercritical water, J. Nucl. Mater. 392 (2009) 264-271, https://doi.org/10.1016/j.jnucmat.2009.03.008.
  35. G. Palumbo, E.M. Lehockey, P. Lin, Applications for grain boundary engineered materials, Jom 50 (1998) 40-43, https://doi.org/10.1007/s11837-998-0248-z.
  36. M. Sekine, N. Sakaguchi, M. Endo, H. Kinoshita, S. Watanabe, H. Kokawa, S. Yamashita, Y. Yano, M. Kawai, Grain boundary engineering of austenitic steel PNC316 for use in nuclear reactors, J. Nucl. Mater. 414 (2011) 232-236, https://doi.org/10.1016/j.jnucmat.2011.03.049.