• Title/Summary/Keyword: errors in variables

Search Result 458, Processing Time 0.035 seconds

Short-Term Load Forecast in Microgrids using Artificial Neural Networks (신경회로망을 이용한 마이크로그리드 단기 전력부하 예측)

  • Chung, Dae-Won;Yang, Seung-Hak;You, Yong-Min;Yoon, Keun-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.4
    • /
    • pp.621-628
    • /
    • 2017
  • This paper presents an artificial neural network (ANN) based model with a back-propagation algorithm for short-term load forecasting in microgrid power systems. Owing to the significant weather factors for such purpose, relevant input variables were selected in order to improve the forecasting accuracy. As remarked above, forecasting is more complex in a microgrid because of the increased variability of disaggregated load curves. Accurate forecasting in a microgrid will depend on the variables employed and the way they are presented to the ANN. This study also shows numerically that there is a close relationship between forecast errors and the number of training patterns used, and so it is necessary to carefully select the training data to be employed with the system. Finally, this work demonstrates that the concept of load forecasting and the ANN tools employed are also applicable to the microgrid domain with very good results, showing that small errors of Mean Absolute Percentage Error (MAPE) around 3% are achievable.

The Relationship between Ophthalmic Refractive Errors and Factors of Nutrition and Health (건강 및 식이요인과 굴절이상 시력장애와의 관련성)

  • 김영옥;최혜정;이순영
    • Korean Journal of Community Nutrition
    • /
    • v.5 no.4
    • /
    • pp.608-614
    • /
    • 2000
  • The purpose of this study was to evaluate the relative importance among various biological and environmental factors on refractive errors. Various factors such as diseases, health related behavior such as drinking, smoking and exercise, as well as dietary factors were considered as a possible determinant. Surveys of 492 residents over 20 years of age in Kuri city were conducted during 1998. The survey included a refractive error test adopting a autokerato-refractometer, dietary survey using a 24 hour recall method, disease survey including blood and other diagnosis tests, and a health behavior survey using questionnaires with variables of smoking, drinking, and exercise. A stepwise logistic regression analysis was adopted to analyse the relative importance among independent variables of health behaviors, disease, and dietary factors on ametropias. As a result, in the case of myopia, liver dysfunction appeared to be the most important factors followed by the health related behavior of smoking and exercise as the second most important factors. Nutrient factors such as carotene and protein appeared to be the third most important factors. Similar results had been shown in the case of the hyperopia. In summary, liver dysfunction and the health related behaviors of drinking and smoking appeared to be more influential factors on abnormal eye sight of myopia and hyperopia than dietary factors.

  • PDF

Prediction Performance of Ocean Temperature and Salinity in Global Seasonal Forecast System Version 5 (GloSea5) on ARGO Float Data

  • Jieun Wie;Jae-Young Byon;Byung-Kwon Moon
    • Journal of the Korean earth science society
    • /
    • v.45 no.4
    • /
    • pp.327-337
    • /
    • 2024
  • The ocean is linked to long-term climate variability, but there are very few methods to assess the short-term performance of forecast models. This study analyzes the short-term prediction performance regarding ocean temperature and salinity of the Global Seasonal prediction system version 5 (GloSea5). GloSea5 is a historical climate re-creation (2001-2010) performed on the 1st, 9th, 17th, and 25th of each month. It comprises three ensembles. High-resolution hindcasts from the three ensembles were compared with the Array for Real-Time Geostrophic Oceanography (ARGO) float data for the period 2001-2010. The horizontal position was preprocessed to match the ARGO float data and the vertical layer to the GloSea5 data. The root mean square error (RMSE), Brier Score (BS), and Brier Skill Score (BSS) were calculated for short-term forecast periods with a lead-time of 10 days. The results show that sea surface temperature (SST) has a large RMSE in the western boundary current region in Pacific and Atlantic Oceans and Antarctic Circumpolar Current region, and sea surface salinity (SSS) has significant errors in the tropics with high precipitation, with both variables having the largest errors in the Atlantic. SST and SSS had larger errors during the fall for the NINO3.4 region and during the summer for the East Sea. Computing the BS and BSS for ocean temperature and salinity in the NINO3.4 region revealed that forecast skill decreases with increasing lead-time for SST, but not for SSS. The preprocessing of GloSea5 forecasts to match the ARGO float data applied in this study, and the evaluation methods for forecast models using the BS and BSS, could be applied to evaluate other forecast models and/or variables.

Improvement of EEG-Based Drowsiness Detection System Using Discrete Wavelet Transform (DWT를 적용한 EEG 기반 졸음 감지 시스템의 성능 향상)

  • Han, Hyungseob;Song, Kyoung-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.9
    • /
    • pp.1731-1733
    • /
    • 2015
  • Since electroencephalogram(EEG) has non-linear and non-stationary properties, it is effective to analyze the characteristic of EEG with time-frequency method rather than spectrum method. In this letter, we propose the modified drowsiness detection system using discrete wavelet transform combined with errors-in-variables and multilayer perceptron methods. For the comparison of the proposed scheme with the previous one, the state 'others' is added to the previous states of drivers: 'alertness,' 'transition,' and 'drowsiness.' From the computer simulation using machine learning, we confirm that the proposed scheme outperforms the previous one for some conditions.

Neural-network-based Fault Detection and Diagnosis Method Using EIV(errors-in variables) (EIV를 이용한 신경회로망 기반 고장진단 방법)

  • Han, Hyung-Seob;Cho, Sang-Jin;Chong, Ui-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.11
    • /
    • pp.1020-1028
    • /
    • 2011
  • As rotating machines play an important role in industrial applications such as aeronautical, naval and automotive industries, many researchers have developed various condition monitoring system and fault diagnosis system by applying artificial neural network. Since using obtained signals without preprocessing as inputs of neural network can decrease performance of fault classification, it is very important to extract significant features of captured signals and to apply suitable features into diagnosis system according to the kinds of obtained signals. Therefore, this paper proposes a neural-network-based fault diagnosis system using AR coefficients as feature vectors by LPC(linear predictive coding) and EIV(errors-in variables) analysis. We extracted feature vectors from sound, vibration and current faulty signals and evaluated the suitability of feature vectors depending on the classification results and training error rates by changing AR order and adding noise. From experimental results, we conclude that classification results using feature vectors by EIV analysis indicate more than 90 % stably for less than 10 orders and noise effect comparing to LPC.

A Study of Validity in Tripartite Model of "Attitudes towards Science" using Exploratory and Confirmatory Factor Analyses (탐색적 확인적 요인 분석을 통한 "과학에 대한 태도" 3요소 모델의 타당도 연구)

  • Lee, Kyung-Hoon
    • Journal of The Korean Association For Science Education
    • /
    • v.17 no.4
    • /
    • pp.481-492
    • /
    • 1997
  • The purpose of this study is to construct validity of Tripartite model of "Attitudes towards Science" using Exploratory and Confirmatory Factor Analyses. Exploratory and confirmatory factor analyses are two major approaches to factor analysis. The primary goal of factor analysis is to explain the covariances or correlations between many observed variables by means of relatively few underlying latent variables. In exploratory factor analysis, the number of latent variables is not determined before the analysis, all latent variables typically influence all observed variables, the measurement errors(${\delta}$) are not allowed to correlate, and unidentification of parameters is common. Confirmatory factor analysis requires a detailed and identified initial model. Confirmatory factor analysis techniques allow relations between latent and observed variables that are not possible with traditional, exploratory factor analysis techniques. As a result of exploratory factor analysis, tripartite model of "Attitudes towards Science" being composed of affection, behavioral intention and cognition is empirically identified. But attitude of science career being composed of affection and behavioral intention is identified. In validity test using confirmatory factor analysis, measurement structure of Tripartite model of "Attitudes towards Science" is not correspondent to data set. Because it is concluded that the object of attitudes are not specific.

  • PDF

Efficient Use of Auxiliary Variables in Estimating Finite Population Variance in Two-Phase Sampling

  • Singh, Housila P.;Singh, Sarjinder;Kim, Jong-Min
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.2
    • /
    • pp.165-181
    • /
    • 2010
  • This paper presents some chain ratio-type estimators for estimating finite population variance using two auxiliary variables in two phase sampling set up. The expressions for biases and mean squared errors of the suggested c1asses of estimators are given. Asymptotic optimum estimators(AOE's) in each class are identified with their approximate mean squared error formulae. The theoretical and empirical properties of the suggested classes of estimators are investigated. In the simulation study, we took a real dataset related to pulmonary disease available on the CD with the book by Rosner, (2005).

An Empirical Study on Differential factors of Accounting Information (회계정보의 차별적 요인에 관한 실증연구)

  • Oh Sung-Geun;Kim Hyun-Ki
    • Management & Information Systems Review
    • /
    • v.12
    • /
    • pp.137-160
    • /
    • 2003
  • The association between accounting earnings and the stock price of an entity is the subject that has been most heavily researched during the past 25 years in accounting literature. Researcher's common finding is that there are positive relationships between accounting earnings and stock prices. However, the explanatory power of accounting earnings which was measured by $R^2$ of regression functions used was rather low. To be connected with these low results, The prior studies propose that there will be additional information, errors in variables. This study investigates empirically determinants of earnings response coefficients(ERCs), which measure the correlation between earnings and stock prices, using earnings level / change, as the dependent variable in the return/earnings regression. Specifically, the thesis tests whether the factors such as earnings persistence, growth, systematic risk, image, information asymmetry and firm size. specially, the determinable variables of ERC are explained in detail. The image / information asymmetry variables are selected to be connected with additional information stand point, The debt / growth variables are selected to be connected with errors in variables. In this study, The sample of firms, listed in Korean Stock Exchange was drawn from the KIS-DATA and was required to meet the following criteria: (1) Annual accounting earnings were available over the 1986-1999 period on the KIS-FAS to allow computation of variables parameter; (2) sufficient return data for estimation of market model parameters were available on the KIS-SMAT month returns: (3) each firm had a fiscal year ending in December throughout the study period. Implementation of these criteria yielded a sample of 1,141 firm-year observation over the 10-year(1990-1999) period. A conventional regression specification would use stock returns(abnormal returns) as a dependent variable and accounting earnings(unexpected earnings) changes interacted with other factors as independent variables. In this study, I examined the relation between other factors and the RRC by using reverse regression. For an empirical test, eight hypotheses(including six lower-hypotheses) were tested. The results of the performed empirical analysis can be summarized as follows; The first, The relationship between persistence of earnings and ERC have significance of each by itself, this result accord with one of the prior studies. The second, The relationship between growth and ERC have not significance. The third, The relationship between image and ERC have significance of each by itself, but a forecast code doesn't present. This fact shows that image cost does not effect on market management share, is used to prevent market occupancy decrease. The fourth, The relationship between information asymmetry variable and ERC have significance of each by. The fifth, The relationship between systematic risk$(\beta)$ and ERC have not significance. The sixth, The relationship between debt ratio and ERC have significance of each by itself, but a forecast code doesn't present. This fact is judged that it is due to the effect of financial leverage effect and a tendency of interest.

  • PDF

Lens-Holder Design in Pick-up Actuator using Sensitivity Analysis (감도해석을 이용한 광픽업 엑추에이터의 렌즈홀더 설계)

  • 이동주;이경택;김철진;박노철;양현석;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.712-717
    • /
    • 2001
  • In order to modify flexible mode frequencies, finite element analysis is applied for a lens-holder in pick-up actuator. Several design parameters like shape and local dimension of a lens-holder were selected adequately and sensitivities of the design variables for vibration modes were obtained by FE analysis and this result was used for updating FE model. A sensitivity matrix between the natural frequencies and the design variables was calculated by finite difference method. By comparing the calculated natural frequencies with target frequencies, modification of the design variables was acquired and used for improving FE model. Calculated natural frequencies after several iterations by FE analysis coincided with target frequencies and the errors between them were minimized.

  • PDF

Analysis of the Types of Errors in Science Graph Construction Processes of Middle School Students (중학생들의 과학 그래프 작성 과정에서의 오류 유형 분석)

  • Kim, You-Jung;Moon, Se-Jeong;Kang, Hun-Sik;Noh, Tae-Hee
    • Journal of The Korean Association For Science Education
    • /
    • v.29 no.2
    • /
    • pp.168-178
    • /
    • 2009
  • In this study, we investigated the errors that students committed in the processes of constructing graphs on experimental results by the students' science achievement level. A test of constructing a graph about 'the relationship between the pressure and volume of a gas' was administered to 7th graders (N=145). Results revealed that most students committed errors in the processes of constructing the graph, showing 12 error types in the categories of 'Misinterpreting the variables', 'Mismarking the graphical elements', and 'Misusing the data'. The students in the lower achievement level had more errors than those in the higher achievement level in the two error types, that is 'representing the bar graph' and 'marking the scale in the presented data order', but the results were reversed in the three error types, that is 'marking the independent variable and dependent variable reversely', 'adding the data', and 'neglecting the data'. In the other error types, there were little differences in the frequencies of the errors by students' science achievement level.