• Title/Summary/Keyword: errors in variables

Search Result 458, Processing Time 0.04 seconds

A Numerical Study on the Behavior of Convex and Concave Slopes in Plan View (볼록 및 오목 사면 형상에 따른 거동에 대한 수치해석 모형 연구)

  • 정우철;박형동;박연준;유광호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11b
    • /
    • pp.213-220
    • /
    • 2000
  • Numerical modeling of cut slope has some limits in simulating the real slopes. In the case of 2D analysis of slope stability, it is assumed that slope is simply straight even when it is concave or convex in plan view. In this study, 3D analysis in curved shape slopes has been conducted for the comparison with 2D analysis in terms of failure mode and factor of safety. For this, 3D analysis by FLAC3D was compared with 2D analysis in plane strain condition and axi-symmetric model condition by FLAC. It was also observed how safety factors of slopes were affected by the variation of the tensile strength and cohesion, which are important variables to decide whether the slope fails or not. 2D analysis of concave slopes under plane strain condition showed much smaller safety factors by 16-40 % errors depending on the radius of curvature of slopes, compared to the more realistic values from 3D analysis. In case of convex slopes, the lower values by 7-10 % has been reported. 2D analysis of axi-symmetric model showed also smaller safety factors by 6-10 % and by 2-4 %, in case of concave and convex slopes, respectively. Such results are expected to contribute to the better understanding of failure process and could be applied for improved design of slopes.

  • PDF

Temperature Control of Greenhouse Using Ventilation Window Adjustments by a Fuzzy Algorithm (퍼지제어에 의한 자연환기온실의 온도제어)

  • 정태상;민영봉;문경규
    • Journal of Bio-Environment Control
    • /
    • v.10 no.1
    • /
    • pp.42-49
    • /
    • 2001
  • This study was carried out to develop a fuzzy control technique of ventilation window for controlling a temperature in a greenhouse. To reduce the fuzzy variables, the inside air temperature shop was taken as one of fuzzy variables, because the inside air temperature variation of a greenhouse by ventilation at the same window aperture is affected by difference between inside and outside air temperature, outside wind speed and the wind direction. Therefore, the antecedent variables for fuzzy algorithm were used the control error and its slop, which was same value as the inside air temperature slop during the control period, and the conclusion variable was used the window aperture opening rate. Through the basic and applicative control experiment with the control period of 3 minutes the optimum ranges of fuzzy variables were decided. The control error and its slop were taken as 3 and 1.5 times compared with target error in steady state, and the window opening rate were taken as 30% of full size of the window aperture. To evaluate the developed fuzzy algorithm in which the optimized 19 rules of fuzzy production were used, the performances of fuzzy control and PID control were compared. The temperature control errors by the fuzzy control and PID control were lower than 1.3$^{\circ}C$ and 2.2$^{\circ}C$ respectively. The accumulated operating size of the window, the number of operating and the number of inverse operating for the fuzzy control were 0.4 times, 0.5 times and 0.3 times of those compared with the PID control. Therefore, the fuzzy control can operating the window more smooth and reduce the operating energy by 1/2 times of PID control.

  • PDF

Comparison of different post-processing techniques in real-time forecast skill improvement

  • Jabbari, Aida;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.150-150
    • /
    • 2018
  • The Numerical Weather Prediction (NWP) models provide information for weather forecasts. The highly nonlinear and complex interactions in the atmosphere are simplified in meteorological models through approximations and parameterization. Therefore, the simplifications may lead to biases and errors in model results. Although the models have improved over time, the biased outputs of these models are still a matter of concern in meteorological and hydrological studies. Thus, bias removal is an essential step prior to using outputs of atmospheric models. The main idea of statistical bias correction methods is to develop a statistical relationship between modeled and observed variables over the same historical period. The Model Output Statistics (MOS) would be desirable to better match the real time forecast data with observation records. Statistical post-processing methods relate model outputs to the observed values at the sites of interest. In this study three methods are used to remove the possible biases of the real-time outputs of the Weather Research and Forecast (WRF) model in Imjin basin (North and South Korea). The post-processing techniques include the Linear Regression (LR), Linear Scaling (LS) and Power Scaling (PS) methods. The MOS techniques used in this study include three main steps: preprocessing of the historical data in training set, development of the equations, and application of the equations for the validation set. The expected results show the accuracy improvement of the real-time forecast data before and after bias correction. The comparison of the different methods will clarify the best method for the purpose of the forecast skill enhancement in a real-time case study.

  • PDF

Estimation of spatial distribution of precipitation by using of dual polarization weather radar data

  • Oliaye, Alireza;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.132-132
    • /
    • 2021
  • Access to accurate spatial precipitation in many hydrological studies is necessary. Existence of many mountains with diverse topography in South Korea causes different spatial distribution of precipitation. Rain gauge stations show accurate precipitation information in points, but due to the limited use of rain gauge stations and the difficulty of accessing them, there is not enough accurate information in the whole area. Weather radars can provide an integrated precipitation information spatially. Despite this, weather radar data have some errors that can not provide accurate data, especially in heavy rainfall. In this study, some location-based variable like aspect, elevation, plan curvature, profile curvature, slope and distance from the sea which has most effect on rainfall was considered. Then Automatic Weather Station data was used for spatial training of variables in each event. According to this, K-fold cross-validation method was combined with Adaptive Neuro-Fuzzy Inference System. Based on this, 80% of Automatic Weather Station data was used for training and validation of model and 20% was used for testing and evaluation of model. Finally, spatial distribution of precipitation for 1×1 km resolution in Gwangdeoksan radar station was estimates. The results showed a significant decrease in RMSE and an increase in correlation with the observed amount of precipitation.

  • PDF

Improvement of Roll Profile Prediction Model in Hot Strip Rolling (열간압연 공정에서 롤 프로파일 예측모델 향상)

  • Chung, J.S.;You, J.;Park, H.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.229-232
    • /
    • 2007
  • In hot strip rolling, the work roll profile is one of the main factors in predicting and correcting the strip profile. Various studies concerning the wear profile and the thermal crown of work roll have been performed, and the results of these studies have shown that the work roll profile must be predicted accurately so as to efficiently control the strip qualities such as thickness, crown, flatness, and camber. Therefore, a precise prediction model of roll profile is called for in a perfect shape control system. In this paper, a genetic algorithm was applied to improve on the roll profile prediction model in hot strip rolling. In this approach, the optimal design problem is formulated on the basis of a numerical model so as to cover the diverse design variables and objective functions. A genetic algorithm was adopted for conducting design iteration for optimization to determine the coefficient of the numerical model for minimization of errors in the result of the calculated value and the measured data. A comparative analysis showed a satisfactory conformity between them..

  • PDF

The piling-up/sinking-in response of elasto-plastic materials in nano-indentation using sharp indenter (나노 인덴테이션 시험에서의 탄소성 재료의 파일업/싱크인 특성)

  • Kim, Byung-Min;Lee, Chan-Joo;Lee, Jung-Min;Lee, Sang-Jin
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1367-1372
    • /
    • 2007
  • Over the past decade, many computational researches have been performed to investigate quantitative relationships between load-displacement and material properties. But piling-up which causes errors to estimate mechanical material properties remains the most significant unresolved issue in nano-indentation test. This study has estimated quantitative aspects of the effects of material properties, especially work hardening exponent, on piling up/sinking in response of various materials. Using FE Analysis, piling up/sinking in response when material is indented by sharp indenter is investigated to evaluate the effects of material properties. From the FE analysis result, quantitative relationships between piling up/sinking in height and material properties is assessed using dimensional analysis which is used to define scaling variables and universal functions. And nano-indentaion test is performed to verify this relation on various materials. From the result of comparison with prediction from dimensional function and experiment, the work hardening exponent was found to have greater influence on the piling up/sinking in height during the nano-indentation than other material properties, such as elastic modulus and yield stress.

  • PDF

Improvement of Roll Profile Prediction Model in Hot Strip Rolling (열간압연 공정에서 롤 프로파일 예측모델 향상)

  • Chung, J.S.;You, J.;Park, H.D.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.250-253
    • /
    • 2007
  • In hot strip rolling, the work roll profile is one of the main factors in predicting and correcting the strip profile. Various studies concerning the wear profile and the thermal crown of work roll have been performed, and the results of these studies have shown that the work roll profile must be predicted accurately so as to efficiently control the strip qualities such as thickness, crown, flatness, and camber. Therefore, a precise prediction model of roll profile is called for in a perfect shape control system. In this paper, a genetic algorithm was applied to improve on the roll profile prediction model in hot strip rolling. In this approach, the optimal design problem is formulated on the basis of a numerical model so as to cover the diverse design variables and objective functions. A genetic algorithm was adopted for conducting design iteration for optimization to determine the coefficient of the numerical model for minimization of errors in the result of the calculated value and the measured data. A comparative analysis showed a satisfactory conformity between them.

Nonuniformity of Conditioning Density According to CMP Conditioning System Design Variables Using Artificial Neural Network (인공신경망을 활용한 CMP 컨디셔닝 시스템 설계 변수에 따른 컨디셔닝 밀도의 불균일도 분석)

  • Park, Byeonghun;Lee, Hyunseop
    • Tribology and Lubricants
    • /
    • v.38 no.4
    • /
    • pp.152-161
    • /
    • 2022
  • Chemical mechanical planarization (CMP) is a technology that planarizes the surfaces of semiconductor devices using chemical reaction and mechanical material removal, and it is an essential process in manufacturing highly integrated semiconductors. In the CMP process, a conditioning process using a diamond conditioner is applied to remove by-products generated during processing and ensure the surface roughness of the CMP pad. In previous studies, prediction of pad wear by CMP conditioning has depended on numerical analysis studies based on mathematical simulation. In this study, using an artificial neural network, the ratio of conditioner coverage to the distance between centers in the conditioning system is input, and the average conditioning density, standard deviation, nonuniformity (NU), and conditioning density distribution are trained as targets. The result of training seems to predict the target data well, although the average conditioning density, standard deviation, and NU in the contact area of wafer and pad and all areas of the pad have some errors. In addition, in the case of NU, the prediction calculated from the training results of the average conditioning density and standard deviation can reduce the error of training compared with the results predicted through training. The results of training on the conditioning density profile generally follow the target data well, confirming that the shape of the conditioning density profile can be predicted.

A Study on Monitoring Technology to Improve the Reliability of Etching Processes (식각공정의 신뢰성 향상을 위한 모니터링 기술에 관한 연구)

  • Kyongnam Kim
    • Journal of Surface Science and Engineering
    • /
    • v.57 no.3
    • /
    • pp.208-213
    • /
    • 2024
  • With the development of industry, miniaturization and densification of semiconductor components are rapidly progressing. Particularly, as demand surges across various sectors, efficiency in productivity has emerged as a crucial issue in semiconductor component manufacturing. Maximizing semiconductor productivity requires real-time monitoring of semiconductor processes and continuous reflection of the results to stabilize processes. However, various unexpected variables and errors in judgment that occur during the process can cause significant losses in semiconductor productivity. Therefore, while the development of a reliable manufacturing system is important, the importance of developing sensor technology that can complement this and accurately monitor the process is also growing. In this study, conducted a basic research on the concept of diagnostic sensors for thickness based on the physical changes of thin films due to etching. It observed changes in resistance corresponding to variations in thin film thickness as etching processes progressed, and conducted research on the correlation between these physical changes and thickness variations. Furthermore, to assess the reliability of thin film thickness measurement sensors, it conducted multiple measurements and comparative analyses of physical changes in thin films according to various thicknesses.

Unscented Filtering Approach to Magnetometer-Only Orbit Determination

  • Cheon, Yee-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2331-2334
    • /
    • 2003
  • The basic difference between the EKF(Extended Kalman Filter) and UKF(Unscented Kalman Filter) stems from the manner in which Gaussian random variables(GRV) are represented for propagating through system dynamics. In the EKF, the state distribution is approximated by a GRV, which is then propagated analytically through the first-order linearization of the nonlinear system. This can possibly introduce large errors in the true posterior mean and covariance of the transformed GRV, which may lead to sub-optimal performance and sometimes divergence of the filter. However, the UKF addresses this problem by using a deterministic sampling approach. The state distribution is also approximated by a GRV, but is now represented using a minimal set of carefully chosen sample points. These sample points completely capture the true mean and covariance of the GRV, and UKF captures the posterior mean and covariance accurately up to the 2nd order(Taylor series expansion) for any nonlinearity. This paper utilizes the UKF to determine spacecraft orbit when only magnetometer is available. Several catastrophic failures of spacecraft in orbit have been attributed to failures of the spacecraft mission. Recently studies on contingency-major sensor failure cases- have been performed. For mission success, contingency design or plan should be implemented in case of a major sensor failure. Therefore the algorithm presented in this paper can be used for a spacecraft without GPS or contingency design in case of GPS failure.

  • PDF