• Title/Summary/Keyword: errors in variables

Search Result 458, Processing Time 0.028 seconds

A Quantitative Performance Index for an Input Observer (II) - Analysis in Steady-State - (입력관측기의 정량적 성능지표 (II) -정상상태 해석-)

  • Jung, Jong-Chul;Lee, Boem-Suk;Huh, Kun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2067-2072
    • /
    • 2002
  • The closed-loop state and input observer is a pole-placement type observer and estimates unknown state and input variables simultaneously. Pole-placement type observers may have poor performances with respect to modeling error and sensing bias error. The effects of these ill-conditioning factors must be minimized for the robust performance in designing observers. In this paper, the steady-state performance of the closed-loop state and input observer is investigated quantitatively and is represented as the estimation error bounds. The performance indices are selected from these error bounds and are related to the robustness with respect to modeling errors and sensing bias. By considering both transient and steady-state performance, the main performance index is determined as the condition number of the eigenvector matrix based on $L_2$-norm.

Penalized maximum likelihood estimation with symmetric log-concave errors and LASSO penalty

  • Seo-Young, Park;Sunyul, Kim;Byungtae, Seo
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.6
    • /
    • pp.641-653
    • /
    • 2022
  • Penalized least squares methods are important tools to simultaneously select variables and estimate parameters in linear regression. The penalized maximum likelihood can also be used for the same purpose assuming that the error distribution falls in a certain parametric family of distributions. However, the use of a certain parametric family can suffer a misspecification problem which undermines the estimation accuracy. To give sufficient flexibility to the error distribution, we propose to use the symmetric log-concave error distribution with LASSO penalty. A feasible algorithm to estimate both nonparametric and parametric components in the proposed model is provided. Some numerical studies are also presented showing that the proposed method produces more efficient estimators than some existing methods with similar variable selection performance.

Predicting the resting metabolic rate of young and middle-aged healthy Korean adults: A preliminary study

  • Park, Hun-Young;Jung, Won-Sang;Hwang, Hyejung;Kim, Sung-Woo;Kim, Jisu;Lim, Kiwon
    • Korean Journal of Exercise Nutrition
    • /
    • v.24 no.1
    • /
    • pp.9-13
    • /
    • 2020
  • [Purpose] This preliminary study aimed to develop a regression model to estimate the resting metabolic rate (RMR) of young and middle-aged Koreans using various easy-to-measure dependent variables. [Methods] The RMR and the dependent variables for its estimation (e.g. age, height, body mass index, fat-free mass; FFM, fat mass, % body fat, systolic blood pressure, diastolic blood pressure, mean arterial pressure, pulse pressure, and resting heart rate) were measured in 53 young (male n = 18, female n = 16) and middle-aged (male n = 5, female n = 14) healthy adults. Statistical analysis was performed to develop an RMR estimation regression model using the stepwise regression method. [Results] We confirmed that FFM and age were important variables in both the regression models based on the regression coefficients. Mean explanatory power of RMR1 regression models estimated only by FFM was 66.7% (R2) and 66.0% (adjusted R2), while mean standard errors of estimates (SEE) was 219.85 kcal/day. Additionally, mean explanatory power of RMR2 regression models developed by FFM and age were 70.0% (R2) and 68.8% (adjusted R2), while the mean SEE was 210.64 kcal/day. There was no significant difference between the measured RMR by the canopy method using a metabolic gas analyzer and the predicted RMR by RMR1 and RMR2 equations. [Conclusion] This preliminary study developed a regression model to estimate the RMR of young and middle-age healthy Koreans. The regression model was as follows: RMR1 = 24.383 × FFM + 634.310, RMR2 = 23.691 × FFM - 5.745 × age + 852.341.

Evaluation on the Lost Prestressing Force of an External Tendon Using the Combination of FEM and HGA: I. Theory (FEM과 HGA의 조합을 이용한 외부 긴장재의 손실 긴장력 평가: I. 이론)

  • Park, Taehyo;Jang, Hang-Teak;Noh, Myung-Hyun;Park, Kyu-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.5 s.57
    • /
    • pp.109-120
    • /
    • 2009
  • This paper introduces a new method to estimate the loss of prestressing force for the externally prestressing tendon. The proposed method that combines of HGA and FEM is able to identify the lost tensile force of a externally prestressed tendon. The identification variables of the proposed method is a exteranlly prestressed tendon of tension, effective nominal diameter, mass per unit length and Rayleigh damping coefficients. First of all, a finite element model system is constructed to consider the effect of damping, and these variables are identified using inverse analysis technique - updating algorithm. Finally, throughout total 3 cases of numerical tests, the numerical propriety of the proposed method is verified. Here, it is seen that the errors in the estimated variables by the proposed method are about 1% except in the case of Rayleigh damping coefficients.

Combined Design of Robust Control System and Structure System (강인성 제어 시스템과 구조 시스템의 통합 최적 설계)

  • Park, J.H.
    • Journal of Power System Engineering
    • /
    • v.7 no.4
    • /
    • pp.38-43
    • /
    • 2003
  • This paper proposes an optimum design problem of structural and control systems. taking a 3-D truss structure as an example. The structure is supposed to be subjected to initial static loads and time-varying disturbances. The structure is controlled by a state feedback $H_{\infty}$ controller to suppress the effect of the disturbances. The design variables are the cross sectional areas of truss members. The structural objective function is the structural weight. As the control objective, we consider two types of performance indices. The first function represents the effect of the initial loads. The second one is the norm of the feedback gain. These objective functions are in conflict with each other. Then, first, two control objective functions are transformed into one control objective by the weighting method. Next, the structural objective is treated as the constraint. By introducing the second control objective which considers the magnitude of the feedback gain, we can per limn the design which is robust in modeling errors.

  • PDF

Causal Loop Diagramming of Location Conflict on LULU(Locally Unwanted Land Use) Facilities and Policy Alternatives (비선호시설 입지갈등에 대한 인과지도 작성과 정책 대안)

  • Lee, Joong-Hoon;Kwon, Hyuk-Il;Kim, Yeon-Sik;Lee, Man-Hyung
    • Korean System Dynamics Review
    • /
    • v.8 no.1
    • /
    • pp.151-171
    • /
    • 2007
  • Without exception, diverse LULU(Locally Unwanted Land Use) facilities have been under the location conflict, especially between the public government units and local residents. In spite of repeated trials-and-errors, literally, the location conflict has shown no sign of improvement over time in Korea. As practical means to tackle these issues, this study focuses on divulging explicit and implicit relationships among key factors derived from the location conflict on the LULU facilities. Here, major research variables cover residents' agreement, residents' perception, compensation expectation, and public opinion. As the location conflict on the LULU facilities could be strengthened or resolved by the dynamic feedback system, it applies basic tools geared toward causal loop diagramming. After repeated experiments, the study highlights the fact that the residents' perception, compensation expectation, and public opinion, individually and collectively, exert significant impact on the residents' agreement ratio.

  • PDF

The Minimization of Tolerance Cost and Quality Loss Cost by the Statistical Tolerance Allocation Method (Statistical Tolerance Allocation을 이용한 제조비용과 품질손실비용의 최소화)

  • Kim, Sunn-Ho;Kwon, Yong-Sung;Lee, Byong-Ki;Kang, Kyung-Sik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.24 no.2
    • /
    • pp.175-183
    • /
    • 1998
  • When a product is designed, tolerances must be given to the product so that required functions are guaranteed and production costs are minimized. In this research, a model is suggested which allocates tolerances to components optimally according to the STA(Statistical Tolerance Allocation) method. Taking into account the concept that dimensional errors have characteristics of statistical distributions, this model presents the discrete pseudo-boolean approach for the tolerance optimization by minimizing the tolerance cost and the quality loss cost. In this approach, two methods are proposed for the reduction of the problem scale; 1) a method for converting the minimization model for casts into the maximization model for cost savings, and 2) procedures to reduce the number of constraints and variables.

  • PDF

A Multivariate Calibration Procedure When the Standard Measurement is Also Subject to Error (표준 측정치의 오차를 고려한 다변량 계기 교정 절차)

  • Lee, Seung-Hoon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.19 no.2
    • /
    • pp.35-41
    • /
    • 1993
  • Statistical calibration is a useful technique for achieving compatibility between two different measurement methods, and it usually consists of two steps : (1) estimation of the relationship between the standard and nonstandard measurements, and (2) prediction of future standard measurements using the estimated relationship and observed nonstandard measurements. A predictive multivariate errors-in-variables model is presented for the multivariate calibration problem in which the standard as well as the nonstandard measurements are subject to error. For the estimation of the relationship between the two measurements, the maximum likelihood (ML) estimation method is considered. It is shown that the direct and the inverse predictors for the future unknown standard measurement are the same under ML estimation. Based upon large-sample approximations, the mean square error of the predictor is derived.

  • PDF

Design of Envelope Protection Algorithm for Helicopters (헬리콥터의 비행영역제한 알고리즘 설계)

  • Ko, Joon Soo;Park, Sungsu;Kim, Kyungmok
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.2
    • /
    • pp.63-68
    • /
    • 2015
  • This paper presents the algorithm for envelope protection of helicopters. The algorithm consists of two feedback control loops: inner loop and outer loop. As an inner loop control, model following control is designed to meet the ADS-33 handling qualities specification by minimizing the tracking errors between the responses of the actual model and those of the command filter. In order to implement envelope protection, saturation limiter is imposed to command channels in command filter, whose limits are computed corresponding to the envelope limit. Fast model predictive control is designed as an outer loop control to deal with saturation constraints generated by the inner loop envelope protection and also imposed by outer loop envelope protection variables. Simulation results show that the proposed algorithm yields good envelope protection performance.

Properties of the Variation of the Infrared Emission of OH/IR Stars III. The M Band Light Curves

  • Kwon, Young-Joo;Suh, Kyung-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.4
    • /
    • pp.279-288
    • /
    • 2010
  • To study properties of the pulsation in the infrared emission for long period variables, we have collected and analyzed the infrared observational data at M band for 12 OH/IR stars. We present the light curves using the data that cover about 30 years including recent observations of ISO and Spitzer. We use Marquardt-Levenberg algorithm to determine the pulsation periods and amplitudes and compare them with previous results of infrared and radio investigations. Generally, the newly determined pulsation parameters show much less errors because of the larger database. We find that the relationship between the pulsation period and amplitudes at M band is fairly well fitted with a simple linear equation in a wide period range. For OH 42.3-0.1, we find some evidences that the object could be a post-asymptotic giant branch star.